-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detection.py
75 lines (55 loc) · 1.79 KB
/
face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# -*- coding: utf-8 -*-
"""
@author: akash
"""
import cv2
#import logging as log
from time import sleep
from predict import PredictImage
cascPath = "./cvdata/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
#log.basicConfig(filename='webcam.log',level=log.INFO)
video_capture = cv2.VideoCapture(0)
img_width, img_height = 224, 224
classify = PredictImage()
def draw_text(img, text, x, y):
cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
while True:
if not video_capture.isOpened():
print('Unable to load camera.')
sleep(5)
pass
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=8,
minSize=(30, 30)
)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
padding = 80
#print(frame.shape, x, x+w, y, y+h)
img = frame[y-padding:y+h+padding, x-padding:x+w+padding]
cv2.rectangle(frame, (x-padding, y-padding), (x+w+padding, y+h+padding), (0, 255, 0), 2)
try:
resized_img = cv2.resize(img, (img_width, img_height))
name = classify.predict(resized_img)
#print(name)
if name is not None:
draw_text(frame, name, x, y-5)
except:
#print('error')
pass
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
#cv2.imwrite('test.png',img)
break
# Display the resulting frame
cv2.imshow('Video', frame)
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()