-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhisper-og.py
236 lines (178 loc) · 7.97 KB
/
whisper-og.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# open-AIs version of the implmentation
import os
from os.path import isfile, join
import argparse
import psutil
import ffmpeg
import whisper
import timeit
import time
from whisper import available_models
from pathlib import Path
from typing import Iterator, TextIO
from utils.download_best import Download
import validators
from utils.get_audio import AudioProcess
temp_audio_filepath = "temp_audio.mp3"
def sizes_supported() -> list[str]:
return available_models()
def srt_format_timestamp(seconds: float):
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
return (f"{hours}:") + f"{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def write_srt(transcript: Iterator[dict], file: TextIO):
print("\nBegin transcription and creating subtitle file:")
print("-------------------------------------------------------")
count = 0
for segment in transcript:
count +=1
print(
f"{count}\n"
f"{srt_format_timestamp(segment['start'])} --> {srt_format_timestamp(segment['end'])}\n"
f"{segment['text'].replace('-->', '->').strip()}\n",
file=file,
flush=True,
)
def findarg(args, key: str) -> bool:
return key in args and getattr(args, key)
def get_fullpath(output_dir, output_file) -> tuple[Path, str]:
output_filepath = Path(output_file).resolve()
if output_filepath.parent != Path(output_dir).resolve():
output_dir = output_filepath.parent
output_file = Path(output_file).name
return Path(output_dir, output_file), output_dir
def transcribe(args, model, full_filepath, filename = None):
assert type(full_filepath) == str
if filename is None: # same as path implicitly
filename = full_filepath
start_time = timeit.default_timer()
segments = model.transcribe(full_filepath, verbose=True, beam_size=args.beam_size, language=args.language)
# save SRT
srt_subtitle_filename = join(args.output_dir, Path(filename).stem + "." + time.strftime("%Y%m%d-%H%M%S") + f".{args.language}.srt")
with open(srt_subtitle_filename, "w") as srt:
write_srt(segments["segments"], file=srt)
print(filename," took ","{:.1f}".format(timeit.default_timer() - start_time)," seconds")
print("-------------------------------------------------------")
def initialize(args):
print("--------------------INITIALIZING-----------------------")
# cleanup the audio file that is no longer needed
if isfile(temp_audio_filepath):
os.remove(temp_audio_filepath)
os.environ["OMP_NUM_THREADS"] = str(args.nproc)
# initialize the model with given args
model = whisper.load_model(args.model_size, device='cpu')
return model;
def close(args):
if not findarg(args, 'keep') and isfile(temp_audio_filepath):
os.remove(temp_audio_filepath)
if findarg(args, 'filename') and isfile(args.filename):
args.filename.close()
def add_media_files(args, media_files, debug = False, verbose = False):
if findarg(args, 'filename'):
if validators.url(args.filename):
args.url = args.filename
args.audio_only = True
args.restrict_filenames = True
args.overwrite = True
args.verbose = False
args.audio_format = 'mp3'
download = Download(args, debug)
audio_file_list, retcode = download.run()
if retcode == 0:# and audio_file_list == args.output_name:
media_files += audio_file_list
else:
print(f"Could not process the URL, code {retcode} and audio file {audio_file_list} and args.output_name {args.output_name}")
close(args)
exit(-1)
elif Path(args.filename).exists():
args.filename, args.output_dir = get_fullpath(os.getcwd(), args.filename)
media_files.append(str(args.filename))
elif findarg(args, 'input_dir'):
if Path(args.input_dir).exists():
for filename in os.listdir(args.input_dir):
filename = Path(args.input_dir, filename)
if filename.is_file():
media_files.append(str(filename));
else:
raise FileNotFoundError(f"--input_dir argument does not specify a valid dir: {args.input_dir}")
# did not find any files
if len(media_files) == 0:
if args.filename:
print("URL is not valid")
close(args)
exit(-1)
else:
print("There were no media to process")
close(args)
exit(0)
print(f"Media files found {len(media_files)}")
def main():
global temp_audio_filepath
media_files = []
parser = argparse.ArgumentParser("Generates subtitiles of the video file as an input")
parser.add_argument("-f", "--filename", help="Name of the media file stored in the filesystem or URL \
of a video/audio file that needs to subtitles. URL can also be a list of media")
parser.add_argument("-i", "--input_dir", help="Input directory where video files are. --filename overrides this")
parser.add_argument("-af", "--audio_filter", help="Audio or video filters to use before transcription \
(for ffmpeg), no spaces, just comma-separated")
parser.add_argument("-o", "--output_name", help="Output filename in case of issues with title")
parser.add_argument("-od", "--output_dir", help="Ouput directory", default=os.getcwd())
parser.add_argument("-l", "--language", help="Language to be translated from", default='en', type=str)
parser.add_argument("-b", "--beam_size", help="Beam size parameter or best_of equivalent from Open-AI whisper", type=int, default=5)
parser.add_argument("-s", "--model_size", help="Size of the model, default is small.", choices=sizes_supported(), nargs='?', default="small")
parser.add_argument("-n", "--nproc", help="Number of CPUs to use", default=psutil.cpu_count(logical=False), type=int)
parser.add_argument('-k', "--keep", help="Keep intermediate files", action='store_true')
parser.add_argument("--verbose", help="Verbose print from dependent processes", action='store_true')
parser.add_argument("--quiet", help="Debug print off", action='store_true')
parser.add_argument("--playlist_start", help="Starting position from a list of media, to start downloading from")
parser.add_argument("--playlist_end", help="Ending position from a list of media, to stop downloading at")
args = parser.parse_args()
# print out the list of possible sizes if no argument is given
if 'model_size' in args and getattr(args, 'model_size') is None:
supported = sizes_supported()
print("\nSupported size in faster-whisper")
print("-------------------------------------------------------")
for size in supported:
print(f"* {size}");
close(args)
exit(0)
# make the directory if missing, output_name override output_dir if former has dir already
if findarg(args, 'output_name'):
args.output_name, args.output_dir = get_fullpath(args.output_dir, args.output_name)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# print out the settings, some of them belongs to dependent scripts such as downloader or get-audio
if args.quiet == False:
print("-----------------------SETTINGS------------------------")
arguments = vars(args)
for arg in arguments:
print(arg, '\t', getattr(args, arg))
temp_audio_filepath = str(Path(args.output_dir, temp_audio_filepath))
add_media_files(args, media_files, debug = not args.quiet, verbose = args.verbose)
model = initialize(args);
# convert the videofile into audiofile before processing
for media_file in media_files:
if args.quiet == False:
print(f"Processing file {media_file} and using audio filter")
if args.audio_filter:
if args.quiet == False:
print(f"File {audiofile}")
print(f"Filter {args.audio_filter}")
audio_processor = AudioProcess(args)
audio_processor.extract_audio(input_filepath=media_file, output_filepath=temp_audio_filepath, overwrite=True);
# output_name is set by setting output_filepath
transcribe(args, model, temp_audio_filepath, media_file)
else:
# output_name is set by setting output_filepath
transcribe(args, model, media_file)
# cleanup the audio file that is no longer needed
close(args)
print("Done.")
return 0
if __name__ == "__main__":
main()