forked from openenergymonitor/ArduinoDue_3phase
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmonLib_3PH.cpp
300 lines (244 loc) · 12.2 KB
/
EmonLib_3PH.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
Emon.cpp - Library for openenergymonitor
Created by Trystan Lea, April 27 2010
GNU GPL
modified to use up to 12 bits ADC resolution (ex. Arduino Due)
also includes 3-phase buffer-delay algorithm for monitoring different line phases with single AC-AC voltage adapter.
by boredman@boredomprojects.net 26.12.2013
*/
//#include "WProgram.h" un-comment for use on older versions of Arduino IDE
#include "EmonLib_3PH.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
//--------------------------------------------------------------------------------------
// Sets the pins to be used for voltage and current sensors
//--------------------------------------------------------------------------------------
void EnergyMonitor::voltage(int _inPinV, double _VCAL, double _PHASECAL, int _PHASE)
{
inPinV = _inPinV;
VCAL = _VCAL;
PHASECAL = _PHASECAL;
PHASE = _PHASE;
}
void EnergyMonitor::current(int _inPinI, double _ICAL)
{
inPinI = _inPinI;
ICAL = _ICAL;
}
//--------------------------------------------------------------------------------------
// Sets the pins to be used for voltage and current sensors based on emontx pin map
//--------------------------------------------------------------------------------------
void EnergyMonitor::voltageTX(double _VCAL, double _PHASECAL, int _PHASE)
{
inPinV = 2;
VCAL = _VCAL;
PHASECAL = _PHASECAL;
PHASE = _PHASE;
}
void EnergyMonitor::currentTX(int _channel, double _ICAL)
{
if (_channel == 1) inPinI = 3;
if (_channel == 2) inPinI = 0;
if (_channel == 3) inPinI = 1;
ICAL = _ICAL;
}
//--------------------------------------------------------------------------------------
// emon_calc procedure
// Calculates realPower,apparentPower,powerFactor,Vrms,Irms,kwh increment
// From a sample window of the mains AC voltage and current.
// The Sample window length is defined by the number of half wavelengths or crossings we choose to measure.
//--------------------------------------------------------------------------------------
void EnergyMonitor::calcVI(int crossings, int timeout)
{
#if defined emonTxV3
int SUPPLYVOLTAGE=3300;
#else
int SUPPLYVOLTAGE = readVcc();
#endif
int crossCount = 0; //Used to measure number of times threshold is crossed.
int numberOfSamples = 0; //This is now incremented
int numberOfPowerSamples = 0; //Needed because 1 cycle of voltages needs to be stored before use
boolean lastVCross, checkVCross; //Used to measure number of times threshold is crossed.
double storedV[PHASE3]; //Array to store >120 degrees of voltage samples
//-------------------------------------------------------------------------------------------------------------------------
// 1) Waits for the waveform to be close to 'zero' (500 adc) part in sin curve.
//-------------------------------------------------------------------------------------------------------------------------
boolean st=false; //an indicator to exit the while loop
unsigned long start = millis(); //millis()-start makes sure it doesnt get stuck in the loop if there is an error.
while(st==false) //the while loop...
{
startV = analogRead(inPinV); //using the voltage waveform
if ((startV < (ADC_COUNTS/2+50)) && (startV > (ADC_COUNTS/2-50))) st=true; //check its within range
if ((millis()-start)>timeout) st = true;
}
// Serial.print("startV="); Serial.println(startV);
//-------------------------------------------------------------------------------------------------------------------------
// 2) Main measurement loop
//-------------------------------------------------------------------------------------------------------------------------
start = millis();
while ((crossCount < crossings) && ((millis()-start)<timeout))
{
lastSampleV=sampleV; //Used for digital high pass filter
lastSampleI=sampleI; //Used for digital high pass filter
lastFilteredV = filteredV; //Used for offset removal
lastFilteredI = filteredI; //Used for offset removal
//-----------------------------------------------------------------------------
// A) Read in raw voltage and current samples
//-----------------------------------------------------------------------------
sampleV = analogRead(inPinV); //Read in raw voltage signal
sampleI = analogRead(inPinI); //Read in raw current signal
//-----------------------------------------------------------------------------
// B) Apply digital high pass filters to remove 2.5V DC offset (centered on 0V).
//-----------------------------------------------------------------------------
filteredV = 0.996*(lastFilteredV+(sampleV-lastSampleV));
filteredI = 0.996*(lastFilteredI+(sampleI-lastSampleI));
storedV[numberOfSamples%PHASE3] = filteredV; // store this voltage sample in circular buffer
if (crossCount >= 2) // one complete cycle has been stored, so can use delayed
{ // voltage samples to calculate instantaneous powers
//-----------------------------------------------------------------------------
// C) Root-mean-square method voltage
//-----------------------------------------------------------------------------
sqV= filteredV * filteredV; //1) square voltage values
sumV += sqV; //2) sum
//-----------------------------------------------------------------------------
// D) Root-mean-square method current
//-----------------------------------------------------------------------------
sqI = filteredI * filteredI; //1) square current values
sumI += sqI; //2) sum
//-----------------------------------------------------------------------------
// E) Phase calibration
// for phases 2 & 3 delays V by 120 degrees & 240 degrees respectively
// and shifts for fine adjustment and to correct transformer errors.
//-----------------------------------------------------------------------------
if( PHASE == 2 ) {
phaseShiftedV = storedV[(numberOfSamples-PHASE2-1)%PHASE3]
+ PHASECAL * (storedV[(numberOfSamples-PHASE2)%PHASE3] - storedV[(numberOfSamples-PHASE2-1)%PHASE3]);
}
else if( PHASE == 3) {
phaseShiftedV = storedV[(numberOfSamples+1)%PHASE3]
+ PHASECAL * (storedV[(numberOfSamples+2)%PHASE3] - storedV[(numberOfSamples+1)%PHASE3]);
}
else { // PHASE==1
phaseShiftedV = lastFilteredV
+ PHASECAL * (filteredV - lastFilteredV);
}
//-----------------------------------------------------------------------------
// F) Instantaneous power calc
//-----------------------------------------------------------------------------
instP = phaseShiftedV * filteredI; //Instantaneous Power
sumP +=instP; //Sum
//Count number of times looped for Power averages.
numberOfPowerSamples++;
}
//-----------------------------------------------------------------------------
// G) Find the number of times the voltage has crossed the initial voltage
// - every 2 crosses we will have sampled 1 wavelength
// - so this method allows us to sample an integer number of half wavelengths which increases accuracy
//-----------------------------------------------------------------------------
lastVCross = checkVCross;
if (sampleV > startV)
checkVCross = true;
else
checkVCross = false;
if (numberOfSamples==0)
lastVCross = checkVCross;
if (lastVCross != checkVCross)
crossCount++;
//Count number of times looped.
numberOfSamples++;
}
//Serial.print("numberOfSamples="); Serial.println(numberOfSamples);
//Serial.print("numberOfPowerSamples="); Serial.println(numberOfPowerSamples);
//Serial.print("crossCount="); Serial.println(crossCount);
//-------------------------------------------------------------------------------------------------------------------------
// 3) Post loop calculations
//-------------------------------------------------------------------------------------------------------------------------
//Calculation of the root of the mean of the voltage and current squared (rms)
//Calibration coeficients applied.
double V_RATIO = VCAL *((SUPPLYVOLTAGE/1000.0) / (ADC_COUNTS));
Vrms = V_RATIO * sqrt(sumV / numberOfPowerSamples);
double I_RATIO = ICAL *((SUPPLYVOLTAGE/1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / numberOfPowerSamples);
//Calculation power values
realPower = V_RATIO * I_RATIO * sumP / numberOfPowerSamples;
apparentPower = Vrms * Irms;
powerFactor=realPower / apparentPower;
//Reset accumulators
sumV = 0;
sumI = 0;
sumP = 0;
//--------------------------------------------------------------------------------------
}
//--------------------------------------------------------------------------------------
double EnergyMonitor::calcIrms(int NUMBER_OF_SAMPLES)
{
#if defined emonTxV3
int SUPPLYVOLTAGE=3300;
#else
int SUPPLYVOLTAGE = readVcc();
#endif
for (int n = 0; n < NUMBER_OF_SAMPLES; n++)
{
lastSampleI = sampleI;
sampleI = analogRead(inPinI);
lastFilteredI = filteredI;
filteredI = 0.996*(lastFilteredI+sampleI-lastSampleI);
// Root-mean-square method current
// 1) square current values
sqI = filteredI * filteredI;
// 2) sum
sumI += sqI;
}
double I_RATIO = ICAL *((SUPPLYVOLTAGE/1000.0) / (ADC_COUNTS));
Irms = I_RATIO * sqrt(sumI / NUMBER_OF_SAMPLES);
//Reset accumulators
sumI = 0;
//--------------------------------------------------------------------------------------
return Irms;
}
void EnergyMonitor::serialprint()
{
Serial.print(realPower);
Serial.print(' ');
Serial.print(apparentPower);
Serial.print(' ');
Serial.print(Vrms);
Serial.print(' ');
Serial.print(Irms);
Serial.print(' ');
Serial.print(powerFactor);
Serial.println(' ');
delay(100);
}
//thanks to http://hacking.majenko.co.uk/making-accurate-adc-readings-on-arduino
//and Jérôme who alerted us to http://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
long EnergyMonitor::readVcc() {
long result;
//not used on emonTx V3 - as Vcc is always 3.3V - eliminates bandgap error and need for calibration http://harizanov.com/2013/09/thoughts-on-avr-adc-accuracy/
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined (__AVR_ATmega328P__)
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
ADCSRB &= ~_BV(MUX5); // Without this the function always returns -1 on the ATmega2560 http://openenergymonitor.org/emon/node/2253#comment-11432
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#endif
#if defined(__AVR__)
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Convert
while (bit_is_set(ADCSRA,ADSC));
result = ADCL;
result |= ADCH<<8;
result = 1126400L / result; //1100mV*1024 ADC steps http://openenergymonitor.org/emon/node/1186
return result;
#elif defined(__arm__)
return (3300); //Arduino Due
#else
return (3300); //Guess that other un-supported architectures will be running a 3.3V!
#endif
}