-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_albef2clip-vit_flickr.py
353 lines (264 loc) · 14.7 KB
/
eval_albef2clip-vit_flickr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from transformers import BertForMaskedLM
from torchvision import transforms
from PIL import Image
from models.model_retrieval import ALBEF
from models.vit import interpolate_pos_embed
from models.tokenization_bert import BertTokenizer
from models import clip
import utils
from attacker import SGAttacker, ImageAttacker, TextAttacker
from dataset import paired_dataset
def retrieval_eval(model, ref_model, t_model, t_ref_model, t_test_transform, data_loader, tokenizer, t_tokenizer, device, config):
# test
model.float()
model.eval()
ref_model.eval()
t_model.float()
t_model.eval()
t_ref_model.eval()
print('Computing features for evaluation adv...')
images_normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
img_attacker = ImageAttacker(images_normalize, eps=2/255, steps=10, step_size=0.5/255)
txt_attacker = TextAttacker(ref_model, tokenizer, cls=False, max_length=30, number_perturbation=1,
topk=10, threshold_pred_score=0.3)
attacker = SGAttacker(model, img_attacker, txt_attacker)
print('Prepare memory')
num_text = len(data_loader.dataset.text)
num_image = len(data_loader.dataset.ann)
t_image_feats = torch.zeros(num_image, t_model.visual.output_dim)
t_text_feats = torch.zeros(num_text, t_model.visual.output_dim)
s_image_feats = torch.zeros(num_image, config['embed_dim'])
s_image_embeds = torch.zeros(num_image, 577, 768)
s_text_feats = torch.zeros(num_text, config['embed_dim'])
s_text_embeds = torch.zeros(num_text, 30, 768)
s_text_atts = torch.zeros(num_text, 30).long()
if args.scales is not None:
scales = [float(itm) for itm in args.scales.split(',')]
print(scales)
else:
scales = None
print('Forward')
for batch_idx, (images, texts_group, images_ids, text_ids_groups) in enumerate(data_loader):
print(f'--------------------> batch:{batch_idx}/{len(data_loader)}')
texts_ids = []
txt2img = []
texts = []
for i in range(len(texts_group)):
texts += texts_group[i]
texts_ids += text_ids_groups[i]
txt2img += [i]*len(text_ids_groups[i])
images = images.to(device)
adv_images, adv_texts = attacker.attack(images, texts, txt2img, device=device,
max_lemgth=30, scales=scales)
with torch.no_grad():
s_adv_images_norm = images_normalize(adv_images)
adv_texts_input = tokenizer(adv_texts, padding='max_length', truncation=True, max_length=30,
return_tensors="pt").to(device)
s_output_img = model.inference_image(s_adv_images_norm)
s_output_txt = model.inference_text(adv_texts_input)
s_image_feats[images_ids] = s_output_img['image_feat'].cpu().detach()
s_image_embeds[images_ids] = s_output_img['image_embed'].cpu().detach()
s_text_feats[texts_ids] = s_output_txt['text_feat'].cpu().detach()
s_text_embeds[texts_ids] = s_output_txt['text_embed'].cpu().detach()
s_text_atts[texts_ids] = adv_texts_input.attention_mask.cpu().detach()
t_adv_img_list = []
for itm in adv_images:
t_adv_img_list.append(t_test_transform(itm))
t_adv_imgs = torch.stack(t_adv_img_list, 0).to(device)
t_adv_images_norm = images_normalize(t_adv_imgs)
output = t_model.inference(t_adv_images_norm, adv_texts)
t_image_feats[images_ids] = output['image_feat'].cpu().float().detach()
t_text_feats[texts_ids] = output['text_feat'].cpu().float().detach()
s_score_matrix_i2t, s_score_matrix_t2i = retrieval_score(model, s_image_feats, s_image_embeds, s_text_feats,
s_text_embeds, s_text_atts, num_image, num_text, device=device)
t_sims_matrix = t_image_feats @ t_text_feats.t()
return s_score_matrix_i2t.cpu().numpy(), s_score_matrix_t2i.cpu().numpy(), \
t_sims_matrix.cpu().numpy(), t_sims_matrix.t().cpu().numpy()
@torch.no_grad()
def retrieval_score(model, image_feats, image_embeds, text_feats, text_embeds, text_atts, num_image, num_text, device=None):
if device is None:
device = image_embeds.device
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation Direction Similarity With Bert Attack:'
sims_matrix = image_feats @ text_feats.t()
score_matrix_i2t = torch.full((num_image, num_text), -100.0).to(device)
for i, sims in enumerate(metric_logger.log_every(sims_matrix, 50, header)):
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
encoder_output = image_embeds[i].repeat(config['k_test'], 1, 1).to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
output = model.text_encoder(encoder_embeds=text_embeds[topk_idx].to(device),
attention_mask=text_atts[topk_idx].to(device),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode='fusion'
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_i2t[i, topk_idx] = score
sims_matrix = sims_matrix.t()
score_matrix_t2i = torch.full((num_text, num_image), -100.0).to(device)
for i, sims in enumerate(metric_logger.log_every(sims_matrix, 50, header)):
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
encoder_output = image_embeds[topk_idx].to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
output = model.text_encoder(encoder_embeds=text_embeds[i].repeat(config['k_test'], 1, 1).to(device),
attention_mask=text_atts[i].repeat(config['k_test'], 1).to(device),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode='fusion'
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2i[i, topk_idx] = score
return score_matrix_i2t, score_matrix_t2i
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, img2txt, txt2img, model_name):
# Images->Text
ranks = np.zeros(scores_i2t.shape[0])
for index, score in enumerate(scores_i2t):
inds = np.argsort(score)[::-1]
# Score
rank = 1e20
for i in img2txt[index]:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
after_attack_tr1 = np.where(ranks < 1)[0]
after_attack_tr5 = np.where(ranks < 5)[0]
after_attack_tr10 = np.where(ranks < 10)[0]
original_rank_index_path = args.original_rank_index_path
origin_tr1 = np.load(f'{original_rank_index_path}/{model_name}_tr1_rank_index.npy')
origin_tr5 = np.load(f'{original_rank_index_path}/{model_name}_tr5_rank_index.npy')
origin_tr10 = np.load(f'{original_rank_index_path}/{model_name}_tr10_rank_index.npy')
asr_tr1 = round(100.0 * len(np.setdiff1d(origin_tr1, after_attack_tr1)) / len(origin_tr1), 2) # 在原来的分类成功的样本里,但是现在不在攻击后的成功分类集合里
asr_tr5 = round(100.0 * len(np.setdiff1d(origin_tr5, after_attack_tr5)) / len(origin_tr5), 2)
asr_tr10 = round(100.0 * len(np.setdiff1d(origin_tr10, after_attack_tr10)) / len(origin_tr10), 2)
# Text->Images
ranks = np.zeros(scores_t2i.shape[0])
for index, score in enumerate(scores_t2i):
inds = np.argsort(score)[::-1]
ranks[index] = np.where(inds == txt2img[index])[0][0]
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
after_attack_ir1 = np.where(ranks < 1)[0]
after_attack_ir5 = np.where(ranks < 5)[0]
after_attack_ir10 = np.where(ranks < 10)[0]
origin_ir1 = np.load(f'{original_rank_index_path}/{model_name}_ir1_rank_index.npy')
origin_ir5 = np.load(f'{original_rank_index_path}/{model_name}_ir5_rank_index.npy')
origin_ir10 = np.load(f'{original_rank_index_path}/{model_name}_ir10_rank_index.npy')
asr_ir1 = round(100.0 * len(np.setdiff1d(origin_ir1, after_attack_ir1)) / len(origin_ir1), 2)
asr_ir5 = round(100.0 * len(np.setdiff1d(origin_ir5, after_attack_ir5)) / len(origin_ir5), 2)
asr_ir10 = round(100.0 * len(np.setdiff1d(origin_ir10, after_attack_ir10)) / len(origin_ir10), 2)
eval_result = {'txt_r1_ASR (txt_r1)': f'{asr_tr1}({tr1})',
'txt_r5_ASR (txt_r5)': f'{asr_tr5}({tr5})',
'txt_r10_ASR (txt_r10)': f'{asr_tr10}({tr10})',
'img_r1_ASR (img_r1)': f'{asr_ir1}({ir1})',
'img_r5_ASR (img_r5)': f'{asr_ir5}({ir5})',
'img_r10_ASR (img_r10)': f'{asr_ir10}({ir10})'}
return eval_result
def load_model(model_name, model_ckpt, text_encoder, device):
tokenizer = BertTokenizer.from_pretrained(text_encoder)
ref_model = BertForMaskedLM.from_pretrained(text_encoder)
if model_name in ['ALBEF', 'TCL']:
model = ALBEF(config=config, text_encoder=text_encoder, tokenizer=tokenizer)
checkpoint = torch.load(model_ckpt, map_location='cpu')
### load checkpoint
else:
model, preprocess = clip.load(model_name, device=device)
model.set_tokenizer(tokenizer)
return model, ref_model, tokenizer
try:
state_dict = checkpoint['model']
except:
state_dict = checkpoint
if model_name == 'TCL':
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],model.visual_encoder_m)
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if 'bert' in key:
encoder_key = key.replace('bert.', '')
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict, strict=False)
return model, ref_model, tokenizer
def eval_asr(model, ref_model, tokenizer, t_model, t_ref_model, t_tokenizer, t_test_transform, data_loader, device, args, config):
model = model.to(device)
ref_model = ref_model.to(device)
t_model = t_model.to(device)
t_ref_model = t_ref_model.to(device)
print("Start eval")
start_time = time.time()
score_i2t, score_t2i, t_score_i2t, t_score_t2i= retrieval_eval(model, ref_model, t_model, t_ref_model, t_test_transform,
data_loader, tokenizer, t_tokenizer, device, config)
t_result = itm_eval(t_score_i2t, t_score_t2i, data_loader.dataset.img2txt, data_loader.dataset.txt2img, 'CLIP_ViT')
print('Performance on {}: \n {}'.format(args.target_model, t_result))
result = itm_eval(score_i2t, score_t2i, data_loader.dataset.img2txt, data_loader.dataset.txt2img, 'ALBEF')
print('Performance on {}: \n {}'.format(args.source_model, result))
print('Performance on {}: \n {}'.format(args.target_model, t_result))
torch.cuda.empty_cache()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Evaluate time {}'.format(total_time_str))
def main(args, config):
device = torch.device('cuda')
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
print("Creating Source Model")
model, ref_model, tokenizer = load_model(args.source_model, args.source_ckpt, args.source_text_encoder, device)
t_model, t_ref_model, t_tokenizer = load_model(args.target_model, args.target_ckpt, args.target_text_encoder, device)
#### Dataset ####
print("Creating dataset")
s_test_transform = transforms.Compose([
transforms.Resize((config['image_res'], config['image_res']), interpolation=Image.BICUBIC),
transforms.ToTensor(),
])
n_px = t_model.visual.input_resolution
t_test_transform = transforms.Compose([
transforms.Resize(n_px, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(n_px),
# transforms.ToTensor(),
])
test_dataset = paired_dataset(config['test_file'], s_test_transform, config['image_root'])
test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
num_workers=4, collate_fn=test_dataset.collate_fn)
eval_asr(model, ref_model, tokenizer, t_model, t_ref_model, t_tokenizer, t_test_transform, test_loader, device, args, config)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Retrieval_flickr.yaml')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--source_model', default='ALBEF', type=str)
parser.add_argument('--source_text_encoder', default='bert-base-uncased', type=str)
parser.add_argument('--source_ckpt', default='./checkpoint/albef/flickr30k.pth', type=str)
parser.add_argument('--target_model', default='ViT-B/16', type=str)
parser.add_argument('--target_text_encoder', default='bert-base-uncased', type=str)
parser.add_argument('--target_ckpt', default=None, type=str)
parser.add_argument('--original_rank_index_path', default='./std_eval_idx/flickr30k/')
parser.add_argument('--scales', type=str, default='0.5,0.75,1.25,1.5')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
main(args, config)