-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
393 lines (313 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
import time
import math
import random
import shutil
import argparse
import torchvision
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import models as models
import random
import logging
from utils import Logger, AverageMeter, accuracy
from models.quantize_utils import QConv2d, calibrate
from math import ceil
from tensorboardX import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-d', '--data', default='data/imagenet', type=str)
parser.add_argument('--data_name', default='imagenet', type=str)
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--warmup_epoch', default=0, type=int, metavar='N',
help='manual warmup epoch number (useful on restarts)')
parser.add_argument('--train_batch_per_gpu', default=256, type=int, metavar='N',
help='train batchsize (default: 256)')
parser.add_argument('--test_batch', default=512, type=int, metavar='N',
help='test batchsize (default: 512)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr_type', default='cos', type=str,
help='lr scheduler (exp/cos/step3/fixed)')
parser.add_argument('--schedule', type=int, nargs='+', default=[31, 61, 91],
help='Decrease learning rate at these epochs.')
parser.add_argument('--arch-cfg', '--ac', default='', type=str, metavar='PATH',
help='path to architecture configuration')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)')
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
help='use pretrained model')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50', choices=model_names,
help='model architecture:' + ' | '.join(model_names) + ' (default: resnet50)')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pin_memory', default=2, type=int,
help='pin_memory of Dataloader')
parser.add_argument('--gpu_id', default='0,1', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
lr_current = state['lr']
args.batch_size = args.train_batch_per_gpu * ceil(len(args.gpu_id) / 2)
print('batch size:', args.batch_size)
print('gpu:', args.gpu_id)
use_cuda = torch.cuda.is_available()
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
best_acc = 0
def load_my_state_dict(model, state_dict):
model_state = model.state_dict()
for name, param in state_dict.items():
if name not in model_state:
continue
param_data = param.data
if model_state[name].shape == param_data.shape:
model_state[name].copy_(param_data)
def train(train_loader, model, criterion, optimizer, epoch, use_cuda):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
start = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 50 == 0:
print_logger.info("The train loss of epoch{}-batch-{}:{},top1 acc:{},top5 acc:{}".format(epoch,
batch_idx,
losses.avg,
top1.avg,
top5.avg))
print_logger.info("The overall train loss of epoch{}:{},top1 acc:{},top5 acc:{},used_time:{}".format(epoch,
losses.avg,
top1.avg,
top5.avg,
time.time() - start))
return losses.avg, top1.avg
def test(val_loader, model, criterion, epoch, use_cuda):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad():
model.eval()
start = time.time()
for batch_idx, (inputs, targets) in enumerate(val_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
print_logger.info(
'Epoch:{}, test loss:{}, top1 acc:{}, top5 acc:{}, used time:{}'.format(epoch, losses.avg, top1.avg, top5.avg,
time.time() - start))
return losses.avg, top1.avg
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar', epoch=0):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch):
global lr_current
if epoch < args.warmup_epoch:
lr_current = state['lr'] * args.gamma
elif args.lr_type == 'cos':
lr_current = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.epochs))
elif args.lr_type == 'exp':
step = 1
decay = args.gamma
lr_current = args.lr * (decay ** (epoch // step))
elif epoch in args.schedule:
lr_current *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr_current
def get_dataset(dataset_name, batch_size, n_worker, data_root='data/imagenet', for_inception=False, pin_memory=True):
print('==> Preparing data..')
if dataset_name == 'imagenet':
traindir = os.path.join(data_root, 'train')
valdir = os.path.join(data_root, 'val')
assert os.path.exists(traindir), traindir + ' not found'
assert os.path.exists(valdir), valdir + ' not found'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
input_size = 299 if for_inception else 224
train_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(
traindir, transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size, shuffle=True,
num_workers=n_worker, pin_memory=pin_memory)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(int(input_size / 0.875)),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size, shuffle=False,
num_workers=n_worker, pin_memory=pin_memory)
n_class = 1000
else:
# Add customized data here
raise NotImplementedError
return train_loader, val_loader, n_class
def finetune(quant_strategy):
lr_current = args.lr
best_acc = 0
start_epoch = args.start_epoch
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
run_name = os.path.join(args.checkpoint, 'visualization')
if not os.path.isdir(run_name):
os.makedirs(run_name)
writer = SummaryWriter(log_dir=run_name)
train_loader, val_loader, n_class = get_dataset(dataset_name=args.data_name, batch_size=args.batch_size,
n_worker=args.workers, data_root=args.data,
pin_memory=args.pin_memory)
model = models.__dict__[args.arch](pretrained=args.pretrained, num_classes=n_class)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
quantizable_idx = []
for i, m in enumerate(model.modules()):
if type(m) in [QConv2d]:
quantizable_idx.append(i)
print('quantizing:', (quantizable_idx))
print((quant_strategy))
quantize_layer_bit_dict = {n: b for n, b in zip(quantizable_idx, quant_strategy)}
for i, layer in enumerate(model.modules()):
if i not in quantizable_idx:
continue
else:
layer.w_bit = quantize_layer_bit_dict[i][0]
layer.a_bit = quantize_layer_bit_dict[i][1]
model = model.cuda()
model = calibrate(model, train_loader)
model = torch.nn.DataParallel(model, device_ids=range(ceil(len(args.gpu_id) / 2)))
title = 'ImageNet-' + args.arch
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
if args.resume:
checkpoint = torch.load(args.resume)
best_acc_resume = checkpoint['best_acc']
print('resuming best accuracy:', best_acc_resume)
model.load_state_dict(checkpoint['state_dict'], strict=False)
if args.evaluate:
print('\nEvaluation only')
test_loss, test_acc = test(val_loader, model, criterion, start_epoch, use_cuda)
print(' Test Loss: %.8f, Test Acc: %.2f' % (test_loss, test_acc))
return
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, lr_current))
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, use_cuda)
writer.add_scalar('train_loss', train_loss, epoch)
writer.add_scalar('train_acc', train_acc, epoch)
test_loss, test_acc = test(val_loader, model, criterion, epoch, use_cuda)
writer.add_scalar('test_loss', test_loss, epoch)
writer.add_scalar('test_acc', test_acc, epoch)
logger.append([lr_current, train_loss, test_loss, train_acc, test_acc])
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
writer.add_scalar('best_acc', best_acc, epoch)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint, epoch=epoch)
logger.close()
writer.close()
print('Best acc:')
print(best_acc)
return best_acc
def _load_arch(arch_path, names_nbits):
checkpoint = torch.load(arch_path)
state_dict = checkpoint['state_dict']
best_arch, worst_arch = {}, {}
for name in names_nbits.keys():
best_arch[name], worst_arch[name] = [], []
for name, params in state_dict.items():
name = name.split('.')[-1]
if name in names_nbits.keys():
alpha = params.cpu().numpy()
# print('name nbits', names_nbits[name], alpha.shape[0])
assert names_nbits[name] == alpha.shape[0]
best_arch[name].append(alpha.argmax())
worst_arch[name].append(alpha.argmin())
return best_arch, worst_arch
if __name__ == '__main__':
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
print_logger = logging.getLogger()
print_logger.setLevel(logging.INFO)
fh = logging.FileHandler(os.path.basename(args.checkpoint) + '_log_' + '.txt')
ch = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
print_logger.addHandler(fh)
print_logger.addHandler(ch)
if len(args.arch_cfg) > 0:
if os.path.isfile(args.arch_cfg):
print("=> loading architecture config from '{}'".format(args.arch_cfg))
else:
print("=> no architecture found at '{}'".format(args.arch_cfg))
wbits, abits = [2, 3, 4, 6], [2, 3, 4, 6]
name_nbits = {'alpha_activ': len(abits), 'alpha_weight': len(wbits)}
best_arch, worst_arch = _load_arch(args.arch_cfg, name_nbits)
archas = [abits[a] for a in best_arch['alpha_activ']]
archws = [wbits[w] for w in best_arch['alpha_weight']]
quant_policy = []
for i in range(len(archas)):
quant_policy.append([archws[i], archas[i]])
print_logger.info(quant_policy)
best_acc = finetune(quant_policy)
print_logger.info([quant_policy, best_acc])