-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathbidet_ssd.py
281 lines (233 loc) · 10.9 KB
/
bidet_ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
from layers import *
from data import voc, coco
from binary_utils import BinarizeConv2d
CFG = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512]
EXTRAS = [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256]
MBOX = [4, 6, 6, 6, 4, 4]
class BiDetVGGBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False,
downsample=None):
super(BiDetVGGBlock, self).__init__()
self.conv = BinarizeConv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
self.bn = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
x = self.bn(self.conv(x))
if self.downsample is not None:
residual = self.downsample(residual)
x += residual
return x
def bidet_vgg(cfg, i=3, bias=False):
layers = []
in_channels = i
for j in range(len(cfg)):
v = cfg[j]
if v == 'M':
layers += [BiDetVGGBlock(in_channels=cfg[j - 1], out_channels=cfg[j + 1],
kernel_size=3, stride=2, padding=1, bias=bias,
downsample=nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=cfg[j - 1], out_channels=cfg[j + 1],
kernel_size=1, stride=1, padding=0, bias=bias),
nn.BatchNorm2d(cfg[j + 1])
))]
in_channels = cfg[j + 1]
elif v == 'C':
layers += [BiDetVGGBlock(in_channels=cfg[j - 1], out_channels=cfg[j + 1],
kernel_size=3, stride=2, padding=1, bias=bias,
downsample=nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True),
nn.Conv2d(in_channels=cfg[j - 1], out_channels=cfg[j + 1],
kernel_size=1, stride=1, padding=0, bias=bias),
nn.BatchNorm2d(cfg[j + 1])
))]
in_channels = cfg[j + 1]
else:
if in_channels == i:
conv = nn.Conv2d(in_channels, v, kernel_size=3, stride=1, padding=1, bias=bias)
layers += [conv, nn.BatchNorm2d(v)]
else:
layers += [BiDetVGGBlock(in_channels, v, kernel_size=3, padding=1, bias=bias)]
in_channels = v
pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
conv6 = BinarizeConv2d(512, 1024, kernel_size=3, padding=6, dilation=6, bias=bias)
conv7 = nn.Conv2d(1024, 1024, kernel_size=1) # shouldn't binarize fc layer
layers += [pool5]
layers += [conv6, nn.BatchNorm2d(1024), nn.ReLU(inplace=True)]
layers += [conv7, nn.BatchNorm2d(1024), nn.ReLU(inplace=True)]
return layers
def init_model(model):
for m in model.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, BinarizeConv2d):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
class VGGBase(nn.Module):
def __init__(self, base):
super(VGGBase, self).__init__()
self.layers = nn.ModuleList(base)
def forward(self, x):
for i in range(14):
x = self.layers[i](x)
output1 = x
for i in range(14, len(self.layers)):
x = self.layers[i](x)
output2 = x
return output1, output2
class BiDetSSD(nn.Module):
"""Single Shot Multibox Architecture
The network is composed of a base VGG network followed by the
added multibox conv layers. Each multibox layer branches into
1) conv2d for class conf scores
2) conv2d for localization predictions
3) associated priorbox layer to produce default bounding
boxes specific to the layer's feature map size.
See: https://arxiv.org/pdf/1512.02325.pdf for more details.
Args:
phase: (string) Can be "test" or "train"
size: input image size
base: VGG16 layers for input, size of either 300 or 500
extras: extra layers that feed to multibox loc and conf layers
head: "multibox head" consists of loc and conf conv layers
"""
def __init__(self, phase, size, base, extras, head, num_classes,
nms_conf_thre=0.03, nms_iou_thre=0.45, nms_top_k=200):
super(BiDetSSD, self).__init__()
self.phase = phase
self.num_classes = num_classes
self.cfg = (coco, voc)[num_classes == 21]
self.priorbox = PriorBox(self.cfg)
with torch.no_grad():
self.priors = Variable(self.priorbox.forward())
self.size = size
# SSD network
self.vgg = VGGBase(base)
# Layer learns to scale the l2 normalized features from conv4_3
self.L2Norm = L2Norm(512, 20)
self.extras = nn.ModuleList(extras)
self.extra_bns = nn.ModuleList([nn.BatchNorm2d(self.extras[i].out_channels)
for i in range(len(self.extras))])
self.loc = nn.ModuleList(head[0])
self.conf = nn.ModuleList(head[1])
self.softmax = nn.Softmax(dim=-1)
self.detect_prior = DetectPrior(num_classes, 0, nms_top_k, nms_conf_thre, nms_iou_thre)
if self.phase == "test":
self.detect = Detect(num_classes, 0, nms_top_k, nms_conf_thre, nms_iou_thre)
init_model(self)
def forward(self, x):
"""Applies network layers and ops on input image(s) x.
Args:
x: input image or batch of images. Shape: [batch,3,300,300].
Return:
Depending on phase:
test:
Variable(tensor) of output class label predictions,
confidence score, and corresponding location predictions for
each object detected. Shape: [batch,topk,7]
train:
list of concat outputs from:
1: confidence layers, Shape: [batch*num_priors,num_classes]
2: localization layers, Shape: [batch,num_priors*4]
3: priorbox layers, Shape: [2,num_priors*4]
"""
sources = list()
loc = list()
conf = list()
output1, x = self.vgg(x)
s = self.L2Norm(output1)
sources.append(s)
sources.append(x)
# apply extra layers and cache source layer outputs
for i in range(len(self.extras)):
x = self.extra_bns[i](self.extras[i](x))
if i % 2 == 1:
sources.append(x)
# apply multibox head to source layers
for (x, l, c) in zip(sources, self.loc, self.conf):
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
if self.phase == "test":
output = self.detect(
(loc.view(loc.size(0), -1, 8)[:, :, 4:]), # loc data without sigma, directly use mean
self.softmax(conf.view(conf.size(0), -1,
self.num_classes)), # conf preds
self.priors.type(type(x.data)) # default boxes
)
else:
output = (
loc.view(loc.size(0), -1, 8),
conf.view(conf.size(0), -1, self.num_classes), # [batch, Σ(H * W * N), num_classes]
self.priors,
sources
)
return output
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
if ext == '.pkl' or '.pth':
print('Loading weights into state dict...')
self.load_state_dict(torch.load(base_file, map_location=lambda storage, loc: storage), strict=False)
print('Finished!')
else:
print('Sorry only .pth and .pkl files supported.')
def add_extras(cfg, i):
# Extra layers added to VGG for feature scaling
layers = []
in_channels = i
flag = False
for k, v in enumerate(cfg):
if in_channels != 'S':
if v == 'S':
layers += [BinarizeConv2d(in_channels, cfg[k + 1],
kernel_size=(1, 3)[flag], stride=2, padding=1,
bias=False)]
else:
layers += [BinarizeConv2d(in_channels, v, kernel_size=(1, 3)[flag],
bias=False)]
flag = not flag
in_channels = v
return layers
def multibox(vgg, extra_layers, cfg, num_classes):
"""This function constructs the detector heads of ssd, so may not be quantized"""
loc_layers = []
conf_layers = []
vgg_source = [13, -3]
for k, v in enumerate(vgg_source):
try:
channel = vgg[v].out_channels
except:
channel = vgg[v].conv.out_channels
loc_layers += [nn.Conv2d(channel, cfg[k] * 8, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(channel, cfg[k] * num_classes, kernel_size=3, padding=1)]
for k, v in enumerate(extra_layers[1::2], 2):
loc_layers += [nn.Conv2d(v.out_channels, cfg[k] * 8, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(v.out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)]
return vgg, extra_layers, (loc_layers, conf_layers)
def build_bidet_ssd(phase, size=300, num_classes=21,
nms_conf_thre=0.01, nms_iou_thre=0.45, nms_top_k=200):
if phase != "test" and phase != "train":
print("ERROR: Phase: " + phase + " not recognized")
return
if size != 300:
print("ERROR: You specified size " + repr(size) + ". However, " +
"currently only SSD300 (size=300) is supported!")
return
base_, extras_, head_ = multibox(bidet_vgg(CFG, 3, bias=False),
add_extras(EXTRAS, 1024),
MBOX, num_classes)
return BiDetSSD(phase, size, base_, extras_, head_, num_classes,
nms_conf_thre, nms_iou_thre, nms_top_k)