-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathbidet_resnet.py
273 lines (218 loc) · 10.4 KB
/
bidet_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from lib.model.utils.config import cfg
from lib.model.faster_rcnn.faster_rcnn import _fasterRCNN_BiDet
import lib.model.faster_rcnn.binary_utils as b_utils
import torch
import torch.nn as nn
import math
import pdb
def binary_conv1x1(in_planes, out_planes, stride=1, **kwargs):
"""3x3 convolution with padding"""
return b_utils.BinarizeConv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False,
**kwargs)
def binary_conv3x3(in_planes, out_planes, stride=1, **kwargs):
"""3x3 convolution with padding"""
return b_utils.BinarizeConv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False,
**kwargs)
def binary_block3x3(in_planes, out_planes, stride=1, **kwargs):
"""3x3 convolution with padding"""
return b_utils.BinBlock(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False,
**kwargs)
def binary_block5x5(in_planes, out_planes, stride=1, **kwargs):
"""3x3 convolution with padding"""
return b_utils.BinBlock(in_planes, out_planes, kernel_size=5, stride=stride,
padding=2, bias=False,
**kwargs)
def conv1x1(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False)
def conv3x3(in_planes, out_planes, stride=1, **kwargs):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False, **kwargs)
class BinBasicBlock(nn.Module):
"""
Shortcut between every two adjacent convs
"""
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, **kwargs):
super(BinBasicBlock, self).__init__()
if downsample is not None:
res_func1 = downsample
else:
res_func1 = b_utils.myid
res_func2 = b_utils.myid
self.conv1 = binary_block3x3(inplanes, planes, stride, res_func=res_func1, **kwargs)
self.conv2 = binary_block3x3(planes, planes, res_func=res_func2, **kwargs)
self.stride = stride
def forward(self, x):
out = x
out = self.conv1(out)
out = self.conv2(out)
return out
class BiDetResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, channels=(64, 128, 256, 512), **kwargs):
super(BiDetResNet, self).__init__()
self.inplanes = channels[0]
first_inplanes = self.inplanes
self.conv1 = nn.Conv2d(3, first_inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(first_inplanes)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, first_inplanes, layers[0], **kwargs)
self.layer2 = self._make_layer(block, channels[1], layers[1], stride=2, **kwargs)
self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2, **kwargs)
if len(channels) == 4:
self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2, **kwargs)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(channels[-1] * block.expansion, num_classes, bias=True)
self.log_softmax = nn.LogSoftmax(dim=-1)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, b_utils.BinarizeConv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear) or isinstance(m, b_utils.BinarizeLinear):
m.weight.data.normal_(0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, **kwargs):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
conv = nn.Conv2d
ds_out_planes = planes * block.expansion
downsample = nn.Sequential(
nn.AvgPool2d(2, stride=stride, ceil_mode=True),
conv(self.inplanes, ds_out_planes, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(ds_out_planes)
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, **kwargs))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, **kwargs))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if hasattr(self, 'layer4'):
x = self.layer4(x)
x = self.avgpool(x).view(x.size(0), -1)
x = self.fc(x)
return self.log_softmax(x)
def bidetnet18(**kwargs):
model = BiDetResNet(BinBasicBlock, [2, 2, 2, 2], **kwargs)
return model
def bidetnet34(**kwargs):
model = BiDetResNet(BinBasicBlock, [3, 4, 6, 3], **kwargs)
return model
class bidet_resnet(_fasterRCNN_BiDet):
def __init__(self, classes, num_layers=18, class_agnostic=False, model_path=None,
fix_real_conv=True, fix_base_bn=True, fix_top_bn=True, nms_threshold=0.01, sample_sigma=0.001,
rpn_prior_weight=0.2, rpn_reg_weight=0.1, head_prior_weight=0.2, head_reg_weight=0.1):
# assume that base net can only be bireal18 or bireal34
self.depth = num_layers
self.model_path = model_path
self.dout_base_model = 256
self.pooled_feat_size = 512
self.class_agnostic = class_agnostic
self.fix_real_conv = fix_real_conv
self.fix_base_bn = fix_base_bn
self.fix_top_bn = fix_top_bn
_fasterRCNN_BiDet.__init__(self, classes, class_agnostic, sample_sigma=sample_sigma,
nms_threshold=nms_threshold,
rpn_prior_weight=rpn_prior_weight, rpn_reg_weight=rpn_reg_weight,
head_prior_weight=head_prior_weight, head_reg_weight=head_reg_weight)
def _init_modules(self):
if self.depth == 18:
resnet = bidetnet18()
elif self.depth == 34:
resnet = bidetnet34()
else:
exit(-1)
if self.model_path is not None:
print("Loading pretrained weights from %s" % self.model_path)
state_dict = torch.load(self.model_path)
resnet.load_state_dict(state_dict, strict=True)
# Build resnet
self.RCNN_base = nn.Sequential(resnet.conv1, resnet.bn1, resnet.maxpool,
resnet.layer1, resnet.layer2, resnet.layer3)
self.RCNN_top = nn.Sequential(resnet.layer4)
self.RCNN_cls_score = nn.Linear(self.pooled_feat_size, self.n_classes)
if self.class_agnostic:
self.RCNN_bbox_pred = nn.Linear(self.pooled_feat_size, 8)
else:
self.RCNN_bbox_pred = nn.Linear(self.pooled_feat_size, 8 * self.n_classes)
# Fix blocks
if self.fix_real_conv:
print("fix base net conv1 and bn1")
for p in self.RCNN_base[0].parameters(): p.requires_grad = False
for p in self.RCNN_base[1].parameters(): p.requires_grad = False
assert (0 <= cfg.RESNET.FIXED_BLOCKS < 4)
if cfg.RESNET.FIXED_BLOCKS >= 3:
print("fix base net layer3")
for p in self.RCNN_base[5].parameters(): p.requires_grad = False
if cfg.RESNET.FIXED_BLOCKS >= 2:
print("fix base net layer2")
for p in self.RCNN_base[4].parameters(): p.requires_grad = False
if cfg.RESNET.FIXED_BLOCKS >= 1:
print("fix base net layer1")
for p in self.RCNN_base[3].parameters(): p.requires_grad = False
def set_bn_fix(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
for p in m.parameters(): p.requires_grad = False
if self.fix_base_bn:
print("fix rcnn base bn")
self.RCNN_base.apply(set_bn_fix)
if self.fix_top_bn:
print("fix rcnn top bn")
self.RCNN_top.apply(set_bn_fix)
def train(self, mode=True):
# Override train so that the training mode is set as we want
nn.Module.train(self, mode)
if mode:
# Set fixed blocks to be in eval mode
# base[0] and base[1] are in eval mode
self.RCNN_base.eval()
assert (0 <= cfg.RESNET.FIXED_BLOCKS < 4)
if cfg.RESNET.FIXED_BLOCKS == 3:
# fix base[0], [1], [3], [4], [5]
pass
elif cfg.RESNET.FIXED_BLOCKS == 2:
# fix base[0], [1], [3], [4]
self.RCNN_base[5].train()
elif cfg.RESNET.FIXED_BLOCKS == 1:
# fix base[0], [1], [3]
self.RCNN_base[5].train()
self.RCNN_base[4].train()
elif cfg.RESNET.FIXED_BLOCKS == 0:
# fix base[0], [1]
self.RCNN_base[5].train()
self.RCNN_base[4].train()
self.RCNN_base[3].train()
if not self.fix_real_conv:
self.RCNN_base[0].train()
self.RCNN_base[1].train()
def set_bn_eval(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
if self.fix_base_bn:
self.RCNN_base.apply(set_bn_eval)
if self.fix_top_bn:
self.RCNN_top.apply(set_bn_eval)
def _head_to_tail(self, pool5):
fc7 = self.RCNN_top(pool5).mean(3).mean(2)
return fc7