-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathzo_rge_main.py
170 lines (146 loc) · 5.89 KB
/
zo_rge_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from os import path
from typing import Any
import torch
from tensorboardX import SummaryWriter
from tqdm import tqdm
from cezo_fl.util import model_helpers
from cezo_fl.fl_helpers import get_server_name
from cezo_fl.util.metrics import Metric, accuracy
from experiment_helper.cli_parser import (
GeneralSetting,
DeviceSetting,
DataSetting,
OptimizerSetting,
ModelSetting,
NormalTrainingLoopSetting,
RGESetting,
)
from experiment_helper.device import use_device
from experiment_helper.data import (
get_dataloaders,
ImageClassificationTask,
LmClassificationTask,
LmGenerationTask,
)
from experiment_helper import prepare_settings
def get_scheduler(
optimizer: torch.optim.SGD,
dataset: ImageClassificationTask | LmClassificationTask | LmGenerationTask,
) -> torch.optim.lr_scheduler.LRScheduler:
if args.dataset == ImageClassificationTask.mnist:
return torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.8)
elif args.dataset in [ImageClassificationTask.cifar10, ImageClassificationTask.fashion]:
return torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[200], gamma=0.1)
else:
raise Exception(f"{dataset.value} not support yet in zo_rge_main")
def get_warmup_lr(args: Any, current_epoch: int, current_iter: int, iters_per_epoch: int) -> float:
assert isinstance(args.lr, float) and isinstance(args.warmup_epochs, int)
overall_iterations = args.warmup_epochs * iters_per_epoch + 1
current_iterations = current_epoch * iters_per_epoch + current_iter + 1
return args.lr * current_iterations / overall_iterations
def train_model(epoch: int) -> tuple[float, float]:
model.train()
train_loss = Metric("train loss")
train_accuracy = Metric("train accuracy")
iter_per_epoch = len(train_loader)
with tqdm(total=iter_per_epoch, desc="Training:") as t, torch.no_grad():
for iteration, (images, labels) in enumerate(train_loader):
if epoch < args.warmup_epochs:
warmup_lr = get_warmup_lr(args, epoch, iteration, iter_per_epoch)
for p in optimizer.param_groups:
p["lr"] = warmup_lr
if device != torch.device("cpu"):
images, labels = images.to(device), labels.to(device)
# update models
optimizer.zero_grad()
grad_estimator.compute_grad(
images,
labels,
lambda x, y: criterion(model_inferences.train_inference(model, x), y),
seed=iteration**2 + iteration,
)
optimizer.step()
pred = model(images)
train_loss.update(criterion(pred, labels))
train_accuracy.update(accuracy(pred, labels))
t.set_postfix({"Loss": train_loss.avg, "Accuracy": train_accuracy.avg})
t.update(1)
if epoch > args.warmup_epochs:
scheduler.step()
return train_loss.avg, train_accuracy.avg
def eval_model(epoch: int) -> tuple[float, float]:
model.eval()
eval_loss = Metric("Eval loss")
eval_accuracy = Metric("Eval accuracy")
with torch.no_grad():
for _, (images, labels) in enumerate(test_loader):
if device != torch.device("cpu"):
images, labels = images.to(device), labels.to(device)
pred = model(images)
eval_loss.update(criterion(pred, labels))
eval_accuracy.update(accuracy(pred, labels))
print(
f"Evaluation(round {epoch}): Eval Loss:{eval_loss.avg:.4f}, "
f"Accuracy:{eval_accuracy.avg * 100:.2f}%"
)
return eval_loss.avg, eval_accuracy.avg
class Setting(
GeneralSetting,
DeviceSetting,
DataSetting,
OptimizerSetting,
ModelSetting,
RGESetting,
NormalTrainingLoopSetting,
):
"""
This is a replacement for regular argparse module.
We used a third party library pydantic_setting to make command line interface easier to manage.
Example:
if __name__ == "__main__":
args = CliSetting()
args will have all parameters defined by all components.
"""
pass
if __name__ == "__main__":
args = Setting()
torch.manual_seed(args.seed)
device_map = use_device(args.device_setting, 1)
train_loaders, test_loader = get_dataloaders(
args.data_setting, 1, args.seed, args.get_hf_model_name()
)
train_loader = train_loaders[0]
device = device_map[get_server_name()]
criterion = torch.nn.CrossEntropyLoss()
model_inferences, metrics = prepare_settings.get_model_inferences_and_metrics(
args.dataset, args.model_setting
)
model = prepare_settings.get_model(args.dataset, args.model_setting, args.seed).to(device)
optimizer = prepare_settings.get_optimizer(
model=model, dataset=args.dataset, optimizer_setting=args.optimizer_setting
)
scheduler = get_scheduler(optimizer, args.dataset)
grad_estimator = prepare_settings.get_random_gradient_estimator(
model=model, device=device, rge_setting=args.rge_setting, model_setting=args.model_setting
)
if args.log_to_tensorboard:
tensorboard_sub_folder = model.model_name + "-" + model_helpers.get_current_datetime_str()
writer = SummaryWriter(
path.join(
"tensorboards",
args.dataset.value,
args.log_to_tensorboard,
tensorboard_sub_folder,
)
)
for epoch in range(args.epoch):
train_loss, train_accuracy = train_model(epoch)
if args.log_to_tensorboard:
writer.add_scalar("Loss/train", train_loss, epoch)
writer.add_scalar("Accuracy/train", train_accuracy, epoch)
eval_loss, eval_accuracy = eval_model(epoch)
if args.log_to_tensorboard:
writer.add_scalar("Loss/test", eval_loss, epoch)
writer.add_scalar("Accuracy/test", eval_accuracy, epoch)
if args.log_to_tensorboard:
writer.close()