-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
152 lines (132 loc) · 6.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from torch.utils.data import DataLoader
import os
import builtins
import argparse
import torch
import torch.distributed as dist
import time
import FSPNet_model
import dataset
import loss
def parse_args():
parser = argparse.ArgumentParser("FSPNet-Transformer")
parser.add_argument('--base_lr', default=(1e-4), type=float, help='learning rate')
parser.add_argument('--batch_size_per_gpu', default=2, type=int, help='batch size per GPU')
parser.add_argument("--resume", default=None)
parser.add_argument('--gpu', default=None, type=int)
parser.add_argument('--path', type=str, help='path to train dataset')
parser.add_argument('--pretrain', type=str, help='path to pretrain model')
parser.add_argument('--ft_for_MoCA', default=None, type=str, help='path to pretrain model')
# DDP configs:
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--local_rank', default=-1, type=int,
help='local rank for distributed training')
args = parser.parse_args()
return args
def main(args):
# DDP setting
if "WORLD_SIZE" in os.environ:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1
ngpus_per_node = torch.cuda.device_count()
if args.distributed:
if args.local_rank != -1: # for torch.distributed.launch
args.rank = args.local_rank
args.gpu = args.local_rank
elif 'SLURM_PROCID' in os.environ: # for slurm scheduler
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
print("args.rank = {}; args.gpu = {}".format(args.rank, args.gpu))
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# suppress printing if not on master gpu
if args.rank!=0:
def print_pass(*args):
pass
builtins.print = print_pass
### model ###
net = FSPNet_model.Model(args.pretrain, img_size=384)
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
os.system("nvidia-smi")
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
net.cuda(args.gpu)
net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[args.gpu])
model_without_ddp = net.module
else:
net.cuda()
net = torch.nn.parallel.DistributedDataParallel(net)
model_without_ddp = net.module
else:
raise NotImplementedError("Only DistributedDataParallel is supported.")
### optimizer ###
# optimizer = torch.optim.Adam(model.parameters(), lr=args.base_lr)
encoder_param=[]
decoer_param=[]
for name, param in net.named_parameters():
if "encoder" in name:
encoder_param.append(param)
else:
decoer_param.append(param)
# optimizer = torch.optim.SGD([{"params": encoder_param, "lr":args.base_lr*0.1},{"params":decoer_param, "lr":args.base_lr}], momentum=0.9, weight_decay=1e-5)
optimizer = torch.optim.Adam([{"params": encoder_param, "lr":args.base_lr*0.1},{"params":decoer_param, "lr":args.base_lr}])
### resume training if necessary ###
if args.resume is not None:
ckpt = torch.load(args.resume, map_location='cpu')
net.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
### Fine tuning for MoCA ###
if args.ft_for_MoCA is not None:
ckpt = torch.load(args.ft_for_MoCA, map_location='cpu')
net.load_state_dict(ckpt)
print("Fine tuning for MoCA, ckpt from: {}".format(args.ft_for_MoCA))
### data ###
Dir = [args.path]
Dataset = dataset.TrainDataset(Dir)
Datasampler = torch.utils.data.distributed.DistributedSampler(Dataset, shuffle=True)
Dataloader = DataLoader(Dataset, batch_size=args.batch_size_per_gpu, num_workers=args.batch_size_per_gpu, collate_fn=dataset.my_collate_fn, sampler=Datasampler, drop_last=True)
# torch.backends.cudnn.benchmark = True
### main loop ###
star_time=time.time()
for curr_epoch in range(0, 201):
if curr_epoch==100 or curr_epoch==150:
for param_group in optimizer.param_groups:
param_group['lr']= param_group['lr']*0.1
print("Learning rate:", param_group['lr'])
Datasampler.set_epoch(curr_epoch)
net.train()
running_loss_all, running_loss_m = 0., 0.
count = 0
for data in Dataloader:
count += 1
img, label = data['img'].cuda(args.rank), data['label'].cuda(args.rank)
out = net(img)
all_loss, m_loss = loss.multi_bce(out, label)
optimizer.zero_grad()
all_loss.backward()
optimizer.step()
running_loss_all += all_loss.item()
running_loss_m += m_loss.item()
if count % 20 == 0 and args.rank == 0:
print("Epoch:{}, Iter:{}, all_loss:{:.5f}, main_loss:{:.5f}".format(curr_epoch, count, running_loss_all / count, running_loss_m / count))
if args.rank == 0 and curr_epoch % 2 == 0:
ckpt_save_root = "/path_to_ckpt_save_root/ckpt_save"
if not os.path.exists(ckpt_save_root):
os.mkdir(ckpt_save_root)
torch.save(net.state_dict(),
ckpt_save_root+"/model_{}_loss_{:.5f}.pth".format(curr_epoch, running_loss_m / count)
)
if __name__ == '__main__':
args = parse_args()
main(args)