Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

About the CAFR dataset. #2

Open
ysc703 opened this issue Dec 27, 2018 · 7 comments
Open

About the CAFR dataset. #2

ysc703 opened this issue Dec 27, 2018 · 7 comments

Comments

@ysc703
Copy link

ysc703 commented Dec 27, 2018

Hi, Zhao
Thanks for your amazing work! And will the CAFR dataset be released soon?

Thanks!

@khawar-islam
Copy link

khawar-islam commented Jan 16, 2020

Have you re trained the model using UTKFace? I tried to re-train it but my GPU is not worked especially in this code but worked fine any other codes.

@keivanB
Copy link

keivanB commented Mar 13, 2021

I have trained on both UTKFACE and CACD. it worked fine. Will the CAFR be released?

@khawar-islam
Copy link

Hi, could you please give me the model? or tell me the details about the TensorFlow version so that I will train it, please

@keivanB
Copy link

keivanB commented Mar 22, 2021

sorry, I am part of a lab and cant share the model without my supervisor's consent. I had to change a lot of details to make it work. I might be able to share the model after my paper is published.

@khawar-islam
Copy link

@keivanB No problem. At least tell me the libraries version so that i can configure it because there is some issue with training.

@keivanB
Copy link

keivanB commented Mar 22, 2021

sure, hope it helps. I realized that this is a problem that many other researchers are facing as well. We are training and evaluating this model on large-scale datasets and I will publicly share the trained models (around June 2021). Hopefully, that will help others.

note that not all of these are necessary for this repo. however, I can't really filter it at this point.

name: Face
channels:

  • anaconda
  • conda-forge
  • defaults
    dependencies:
  • _libgcc_mutex=0.1=main
  • _tflow_select=2.1.0=gpu
  • absl-py=0.9.0=py36_0
  • astor=0.8.0=py36_0
  • attrs=19.3.0=py_0
  • backcall=0.1.0=py36_0
  • blas=1.0=mkl
  • bleach=3.1.4=py_0
  • bzip2=1.0.8=h7b6447c_0
  • c-ares=1.15.0=h7b6447c_1001
  • ca-certificates=2021.1.19=h06a4308_0
  • cairo=1.14.12=h8948797_3
  • certifi=2020.12.5=py36h06a4308_0
  • cloudpickle=1.3.0=py_0
  • cudatoolkit=10.1.243=h6bb024c_0
  • cudnn=7.6.5=cuda10.1_0
  • cupti=10.1.168=0
  • cycler=0.10.0=py36_0
  • cytoolz=0.10.1=py36h7b6447c_0
  • dask-core=2.15.0=py_0
  • dbus=1.13.12=h746ee38_0
  • decorator=4.4.2=py_0
  • defusedxml=0.6.0=py_0
  • dill=0.3.1.1=py36_0
  • dlib=19.19=py36h5245418_1
  • entrypoints=0.3=py36_0
  • et_xmlfile=1.0.1=py_1001
  • expat=2.2.6=he6710b0_0
  • ffmpeg=4.0=hcdf2ecd_0
  • fontconfig=2.13.0=h9420a91_0
  • freeglut=3.0.0=hf484d3e_5
  • freetype=2.9.1=h8a8886c_1
  • gast=0.3.3=py_0
  • glib=2.56.2=hd408876_0
  • gmp=6.1.2=hb3b607b_0
  • google-pasta=0.2.0=py_0
  • graphite2=1.3.13=h23475e2_0
  • grpcio=1.27.2=py36hf8bcb03_0
  • gst-plugins-base=1.14.0=hbbd80ab_1
  • gstreamer=1.14.0=hb453b48_1
  • h5py=2.8.0=py36h989c5e5_3
  • harfbuzz=1.8.8=hffaf4a1_0
  • hdf5=1.10.2=hba1933b_1
  • icu=58.2=h211956c_0
  • imageio=2.8.0=py_0
  • importlib_metadata=1.5.0=py36_0
  • intel-openmp=2020.0=166
  • ipykernel=5.1.4=py36h39e3cac_0
  • ipython=7.13.0=py36h5ca1d4c_0
  • ipython_genutils=0.2.0=py36_0
  • ipywidgets=7.5.1=py_0
  • jasper=2.0.14=h07fcdf6_1
  • jdcal=1.4.1=py_0
  • jedi=0.16.0=py36_1
  • jinja2=2.11.1=py_0
  • joblib=0.14.1=py_0
  • jpeg=9c=h14c3975_1001
  • jsonschema=3.2.0=py36_0
  • jupyter=1.0.0=py36_7
  • jupyter_client=6.1.2=py_0
  • jupyter_console=6.1.0=py_0
  • jupyter_core=4.6.3=py36_0
  • keras-applications=1.0.8=py_0
  • keras-base=2.2.4=py36_0
  • keras-gpu=2.2.4=0
  • keras-preprocessing=1.1.0=py_1
  • kiwisolver=1.1.0=py36he6710b0_0
  • libblas=3.8.0=14_mkl
  • libcblas=3.8.0=14_mkl
  • libedit=3.1.20181209=hc058e9b_0
  • libffi=3.2.1=hd88cf55_4
  • libgcc-ng=9.1.0=hdf63c60_0
  • libgfortran-ng=7.3.0=hdf63c60_0
  • libglu=9.0.0=hf484d3e_1
  • liblapack=3.8.0=14_mkl
  • libopencv=3.4.2=hb342d67_1
  • libopus=1.3.1=h7b6447c_0
  • libpng=1.6.37=hbc83047_0
  • libprotobuf=3.11.4=hd408876_0
  • libsodium=1.0.16=h1bed415_0
  • libstdcxx-ng=9.1.0=hdf63c60_0
  • libtiff=4.1.0=h2733197_0
  • libuuid=1.0.3=h1bed415_2
  • libvpx=1.7.0=h439df22_0
  • libxcb=1.13=h1bed415_1
  • libxml2=2.9.9=hea5a465_1
  • markdown=3.1.1=py36_0
  • markupsafe=1.1.1=py36h7b6447c_0
  • matplotlib=3.1.3=py36_0
  • matplotlib-base=3.1.3=py36hef1b27d_0
  • mistune=0.8.4=py36h7b6447c_0
  • mkl=2019.4=243
  • mkl-service=2.3.0=py36he904b0f_0
  • mkl_fft=1.0.15=py36ha843d7b_0
  • mkl_random=1.1.0=py36hd6b4f25_0
  • nb_conda=2.2.1=py36_0
  • nb_conda_kernels=2.3.1=py36h06a4308_0
  • nbconvert=5.6.1=py36_0
  • nbformat=5.0.4=py_0
  • ncurses=6.2=he6710b0_1
  • networkx=2.4=py_0
  • notebook=6.0.3=py36_0
  • numpy=1.18.1=py36h4f9e942_0
  • numpy-base=1.18.1=py36hde5b4d6_1
  • olefile=0.46=py36_0
  • openpyxl=3.0.5=py_0
  • openssl=1.1.1j=h27cfd23_0
  • pandas=1.1.3=py36he6710b0_0
  • pandoc=2.2.3.2=0
  • pandocfilters=1.4.2=py36_1
  • parso=0.6.2=py_0
  • patsy=0.5.1=py36_0
  • pcre=8.43=he6710b0_0
  • pexpect=4.8.0=py36_0
  • pickleshare=0.7.5=py36_0
  • pillow=7.0.0=py36hb39fc2d_0
  • pip=20.0.2=py36_1
  • pixman=0.38.0=h7b6447c_0
  • prometheus_client=0.7.1=py_0
  • prompt-toolkit=3.0.4=py_0
  • prompt_toolkit=3.0.4=0
  • protobuf=3.11.4=py36he6710b0_0
  • ptyprocess=0.6.0=py36_0
  • py-opencv=3.4.2=py36hb342d67_1
  • pygments=2.6.1=py_0
  • pyparsing=2.4.6=py_0
  • pyqt=5.9.2=py36h22d08a2_1
  • pyrsistent=0.16.0=py36h7b6447c_0
  • python=3.6.8=h0371630_0
  • python-dateutil=2.8.1=py_0
  • python_abi=3.6=1_cp36m
  • pytz=2019.3=py_0
  • pywavelets=1.1.1=py36h7b6447c_0
  • pyyaml=5.3.1=py36h7b6447c_0
  • pyzmq=18.1.1=py36he6710b0_0
  • qt=5.9.7=h5867ecd_1
  • qtconsole=4.7.3=py_0
  • qtpy=1.9.0=py_0
  • readline=7.0=h7b6447c_5
  • scikit-image=0.16.2=py36h0573a6f_0
  • scikit-learn=0.22.1=py36hd81dba3_0
  • scipy=1.4.1=py36h0b6359f_0
  • seaborn=0.11.0=py_0
  • send2trash=1.5.0=py36_0
  • setuptools=46.1.3=py36_0
  • sip=4.19.13=py36he6710b0_0
  • six=1.14.0=py36_0
  • sqlite=3.31.1=h62c20be_1
  • statsmodels=0.12.0=py36h7b6447c_0
  • tensorboard=1.14.0=py36hf484d3e_0
  • tensorflow=1.14.0=gpu_py36h3fb9ad6_0
  • tensorflow-base=1.14.0=gpu_py36he45bfe2_0
  • tensorflow-estimator=1.14.0=py_0
  • tensorflow-gpu=1.14.0=h0d30ee6_0
  • termcolor=1.1.0=py36_1
  • terminado=0.8.3=py36_0
  • testpath=0.4.4=py_0
  • tk=8.6.8=hbc83047_0
  • toolz=0.10.0=py_0
  • tornado=6.0.4=py36h7b6447c_1
  • traitlets=4.3.3=py36_0
  • wcwidth=0.1.9=py_0
  • webencodings=0.5.1=py36_1
  • werkzeug=1.0.1=py_0
  • wheel=0.34.2=py36_0
  • widgetsnbextension=3.5.1=py36_0
  • wrapt=1.12.1=py36h7b6447c_1
  • xlrd=1.2.0=py36_0
  • xz=5.2.5=h7b6447c_0
  • yaml=0.1.7=h96e3832_1
  • zeromq=4.3.1=he6710b0_3
  • zipp=2.2.0=py_0
  • zlib=1.2.11=h7b6447c_3
  • zstd=1.3.7=h0b5b093_0
  • pip:
    • augmentor==0.2.8
      prefix: /home/keivan/anaconda3/envs/Face

@ahmedelkhatib7
Copy link

sorry, I am part of a lab and cant share the model without my supervisor's consent. I had to change a lot of details to make it work. I might be able to share the model after my paper is published.

Hello Brother,

I trained the model but, I'm not able to test it. Can you please provide me with the steps needed to test the model? I'm using this model for my graduation project so, your response will really help me out.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants