-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoffline_feature_generation.py
54 lines (46 loc) · 1.77 KB
/
offline_feature_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import torch
import importlib
import argparse
from tqdm import tqdm
from data.modelnet40_mv_loader import ModelNet40
from torch.utils.data import DataLoader
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='dataset/ModelNet40/data/', help='Name of the data root')
parser.add_argument('--model_path', type=str, default='./checkpoint/mvcnn_default/models/model.t7', help='Pretrained model path')
parser.add_argument('--mv_backbone', type=str, default="resnet18")
parser.add_argument('--num_class', type=int, default=40)
parser.add_argument('--pretraining', type=bool, default=False)
cfg = parser.parse_args()
def generate_data(split):
loader = DataLoader(
ModelNet40(
data_path=cfg.data_root,
partition=split,
generate=True,
),
num_workers=8,
batch_size=8,
shuffle=False,
drop_last=False,
pin_memory=True)
features = []
for i, data_batch in tqdm(enumerate(loader), total=(len(loader))):
data_pc = data_batch['pointcloud']
data_label = data_batch['label']
_, mvf = model(data_batch)
for j in range(data_pc.shape[0]):
features.append((data_pc[j], data_label[j], mvf[j].detach().cpu()))
save_path = os.path.join(cfg.data_root, 'modelnet40_%s_mvf.pth' % split)
torch.save(features, save_path)
if __name__ == '__main__':
model = importlib.import_module('models.mvcnn')
model = model.get_model(cfg).to(DEVICE)
pn_param = torch.load(cfg.model_path)
for i in list(pn_param.keys()):
j = i[7:]
pn_param[j] = pn_param.pop(i)
model.load_state_dict(pn_param)
model.eval()
generate_data('train')