
Abstract

The following is a proposal for Zcash to adopt an alternate proof-of-work algorithm -
“ProgPoW” - tuned for commodity hardware in order to close the efficiency gap
available to specialized ASICs. The grant proposal is not to fund the initial
implementation, but rather to fund qualified independent review, adoption, and
maintenance of the code.

The security of proof-of-work is built on a fair, randomized lottery where miners with
similar resources have a similar chance of generating the next block.

For Zcash - a community based on widely distributed commodity hardware - specialized
ASICs enable certain participants to gain a much greater chance of generating the next
block, and undermine the distributed security.

ASIC-resistance is a misunderstood problem. FPGAs, GPUs and CPUs can themselves
be considered ASICs. Any algorithm that executes on a commodity ASIC can have a
specialized ASIC made for it; most existing algorithms provide opportunities that reduce
power usage and cost. Thus, the proper question to ask when solving ASIC-resistance
is “how much more efficient will a specialized ASIC be, in comparison with commodity
hardware?”

This proposal presents an algorithm that is tuned for commodity GPUs where there is
minimal opportunity for ASIC specialization. This prevents specialized ASICs without
resorting to a game of whack-a-mole where the network changes algorithms every few
months.

Motivation

Since proof-of-work will continue to underpin the security of the Zcash network, it is
important that this consensus isn’t dominated by a single party in control of a large
portion of the compute power.

The existence of the Z9 ASIC miner proves that the current Equihash algorithm allows
significant efficiency gains from specialize hardware. ​The ~150mb of state in Equihash
is large but possible on an ASIC. Furthermore, the binning, sorting, and comparing of
bit strings could be implemented on an ASIC at extremely high speed.

Replacing the current Equihash with ProgPoW will allow Zcash to be resistant to
domination by specialized hardware and avoid further PoW code forks.

Technical Approach

ProgPoW comprises:

● A memory hard component that is latency tolerant, and has high throughput and high
capacity requirements.

● A GPU optimized math component that is highly programmatically variable (based on a
block header), while saturting all GPU architecture (register files, cache, math units, logic
units). This component is balanced between popular GPU architectures, so one
architecture isn't dominant.

Prog-PoW utilizes almost all parts of a commodity GPU, excluding:

● The graphics pipeline (displays, geometry engines, texturing, etc);
● Floating point math.

Making use of either of these would have significant portability issues between
commodity hardware vendors and across programming languages.

Since the GPU is almost fully utilized, there’s little opportunity for specialized ASICs to
gain efficiency. Removing both the graphics pipeline and floating point math could
provide up to 1.2x gains in efficiency, compared to the 2x gains possible in Dagger
Hashimoto, 50x gains possible for CryptoNight, and ~100x gains possible in Equihash.

Prog-PoW preserves the 256-bit nonce size for Zcash and thus does not require any
changes to light clients. However, it entirely replaces the rest of the Equihash PoW
algorithm.

For the memory hard component, Prog-PoW follows the same general structure as
Dagger Hashimoto. Dagger Hashimoto was selected as a base due to its simple
algorithm. Dagger Hashimoto has also withstood a significant amount of real-world
“battle testing.” Starting from a simple algorithm makes the changes easy to understand
and easy to assess for strengths and weakness. Unnecessary complexity tends to imply
a larger attack surface.

The name of the algorithm comes from the fact that the inner loop between global
memory accesses is a randomly generated program based on the block number. The

random program is designed to both run efficiently on commodity GPUs and also cover
most of the GPU's functionality. The random program sequence prevents the creation
of a fixed pipeline implementation as seen in a specialized ASIC. The access zisee has
also been tweaked to match contemporary GPUs.

The algorithm has five main changes from Dagger Hashimoto, each tuned for
commodity GPUs while minimizing the possible advantage of a specialized ASIC. In
contrast to Dagger Hashimoto, the changes detailed below make Prog-PoW dependent
on the core compute capabilities in addition to memory bandwidth and size.

Changes keccak to blake2s.

Zcash already uses BLAKE2 in various locations, so it makes sense to continue using
BLAKE2. GPUs are natively 32-bit architectures so blake2s is used. Both blake2b and
blake2s provide the same security, but are tuned for 64-bit and 32-bit architectures
respectively. Blake2s runs roughly twice as fast on a 32-bit architecture as blake2b.

Increases mix state.

A significant part of a GPU’s area, power, and complexity is the large register file. A
large mix state ensures that a specialized ASIC would need to implement similar state
storage, limiting any advantage.

Adds a random sequence of math in the main loop.

The random math changes every 50 blocks to amortize compilation overhead. Having a
random sequence of math that reads and writes random locations within the state
ensures that the ASIC executing the algorithm is fully programmable. There is no
possibility to create an ASIC with a fixed pipeline that is much faster or lower power.

Adds reads from a small, low-latency cache that supports random addresses.

Another significant part of a GPU’s area, power, and complexity is the memory
hierarchy. Adding cached reads makes use of this hierarchy and ensures that a
specialized ASIC also implements a similar hierarchy, preventing power or area
savings.

Increases the DRAM read from 128 bytes to 256 bytes.

The DRAM read from the DAG is the same as Dagger Hashimoto’s, but with the size
increased to ​256 bytes​. This better matches the workloads seen on commodity GPUs,

preventing a specialized ASIC from being able to gain performance by optimizing the
memory controller for abnormally small accesses.

The DAG file is generated according to traditional Dagger Hashimoto specifications,
with an additional ​ProgPoW_SIZE_CACHE​ bytes generated that will be cached in the L1.

Prog-PoW can be tuned using the following parameters. The proposed settings have
been tuned for a range of existing, commodity GPUs:

● ProgPoW_LANES:​ The number of parallel lanes that coordinate to calculate a
single hash instance; default is ​32.

● ProgPoW_REGS:​ The register file usage size; default is ​16.

● ProgPoW_CACHE_BYTES:​ The size of the cache; default is ​16 x 1024.

● ProgPoW_CNT_MEM:​ The number of frame buffer accesses, defined as the outer
loop of the algorithm; default is ​64​ (same as Dagger Hashimoto).

● ProgPoW_CNT_CACHE:​ The number of cache accesses per loop; default is ​8.

● ProgPoW_CNT_MATH:​ The number of math operations per loop; default is ​8.

Prog-PoW uses FNV1a for merging data. The existing Dagger Hashimoto uses FNV1
for merging, but FNV1a provides better distribution properties.

Prog-PoW uses ​KISS99​ for random number generation. This is the simplest (fewest
instruction) random generator that passes the TestU01 statistical test suite. A more
complex random number generator like Mersenne Twister can be efficiently
implemented on a specialized ASIC, providing an opportunity for efficiency gains.

uint32_t​ ​fnv1a​(​uint32_t​ &h, ​uint32_t​ d)

{

 ​return​ h = (h ^ d) * ​0x1000193​;

}

typedef​ ​struct​ {

 ​uint32_t​ z, w, jsr, jcong;

} ​kiss99_t​;

// KISS99 is simple, fast, and passes the TestU01 suite

// https://en.wikipedia.org/wiki/KISS_(algorithm)

// http://www.cse.yorku.ca/~oz/marsaglia-rng.html

https://en.wikipedia.org/wiki/KISS_(algorithm)

uint32_t​ ​kiss99​(​kiss99_t​ &st)

{

 ​uint32_t​ znew = (st.z = ​36969​ * (st.z & ​65535​) + (st.z >> ​16​));

 ​uint32_t​ wnew = (st.w = ​18000​ * (st.w & ​65535​) + (st.w >> ​16​));

 ​uint32_t​ MWC = ((znew << ​16​) + wnew);

 ​uint32_t​ SHR3 = (st.jsr ^= (st.jsr << ​17​), st.jsr ^= (st.jsr >> ​13​), st.jsr ^= (st.jsr <<

5​));

 ​uint32_t​ CONG = (st.jcong = ​69069​ * st.jcong + ​1234567​);

 ​return​ ((MWC^CONG) + SHR3);

}

The ​LANES*REGS​ of mix data is initialized from the hash’s seed.

void​ ​fill_mix​(

 ​uint64_t​ hash_seed,

 ​uint32_t​ lane_id,

 ​uint32_t​ mix[ProgPoW_REGS]

)

{

 ​// Use FNV to expand the per-warp seed to per-lane

 ​// Use KISS to expand the per-lane seed to fill mix

 ​uint32_t​ fnv_hash = ​0x811c9dc5​;

 ​kiss99_t​ st;

 st.z = ​fnv1a​(fnv_hash, seed);

 st.w = ​fnv1a​(fnv_hash, seed >> ​32​);

 st.jsr = ​fnv1a​(fnv_hash, lane_id);

 st.jcong = ​fnv1a​(fnv_hash, lane_id);

 ​for​ (​int​ i = ​0​; i < ProgPoW_REGS; i++)

 mix[i] = ​kiss99​(st);

}

The main search algorithm uses blake2s to generate a seed, expands the seed, does a
sequence of loads and random math on the mix data, and then compresses the result
into a final blake2s for target comparison.

bool​ ​ProgPoW_search​(

 ​const​ ​uint64_t​ prog_seed,

 ​const​ ​uint256_t​ nonce,

 ​const​ ​uint256_t​ header,

 ​const​ ​uint64_t​ target,

 ​const​ ​uint64_t​ *g_dag, ​// gigabyte DAG located in framebuffer

 ​const​ ​uint64_t​ *c_dag ​// kilobyte DAG located in l1 cache

)

{

 ​uint32_t​ mix[ProgPoW_LANES][ProgPoW_REGS];

 ​uint32_t​ result[​4​];

 ​for​ (​int​ i = ​0​; i < ​4​; i++)

 result[i] = ​0​;

 ​// blake2s(header..nonce)

 ​uint64_t​ seed = ​blake2s​(header, nonce, result);

 ​// initialize mix for all lanes

 ​for​ (​int​ l = ​0​; l < ProgPoW_LANES; l++)

 ​fill_mix​(seed, l, mix);

 ​// execute the randomly generated inner loop

 ​for​ (​int​ i = ​0​; i < ProgPoW_CNT_MEM; i++)

 ​ProgPoWLoop​(prog_seed, i, mix, g_dag, c_dag);

 ​// Reduce mix data to a single per-lane result

 ​uint32_t​ lane_hash[ProgPoW_LANES];

 ​for​ (​int​ l = ​0​; l < ProgPoW_LANES; l++)

 {

 lane_hash[l] = ​0x811c9dc5

 ​for​ (​int​ i = ​0​; i < ProgPoW_REGS; i++)

 ​fnv1a​(lane_hash[l], mix[l][i]);

 }

 ​// Reduce all lanes to a single 128-bit result

 ​for​ (​int​ i = ​0​; i < ​4​; i++)

 result[i] = ​0x811c9dc5​;

 ​for​ (​int​ l = ​0​; l < ProgPoW_LANES; l++)

 ​fnv1a​(result[l%​4​], lane_hash[l])

 ​// blake2s(header .. blake2s(header..nonce) .. result);

 ​return​ (​blake2s​(header, seed, result) <= target);

}

The inner loop uses FNV and KISS99 to generate a random sequence from the
prog_seed​. This random sequence determines which mix state is accessed and what
random math is performed. Since the ​prog_seed​ changes relatively infrequently it is
expected that ​ProgPoWLoop​ will be compiled while mining instead of interpreted on the
fly.

kiss99_t​ ​ProgPoWInit​(​uint64_t​ prog_seed, ​int​ mix_seq[ProgPoW_REGS])

{

 ​kiss99_t​ prog_rnd;

 ​uint32_t​ fnv_hash = ​0x811c9dc5​;

 prog_rnd.z = ​fnv1a​(fnv_hash, prog_seed);

 prog_rnd.w = ​fnv1a​(fnv_hash, prog_seed >> ​32​);

 prog_rnd.jsr = ​fnv1a​(fnv_hash, prog_seed);

 prog_rnd.jcong = ​fnv1a​(fnv_hash, prog_seed >> ​32​);

 ​// Create a random sequence of mix destinations for merge()

 ​// guaranteeing every location is touched once

 ​// Uses Fisher–Yates shuffle

 ​for​ (​int​ i = ​0​; i < ProgPoW_REGS; i++)

 mix_seq[i] = i;

 ​for​ (​int​ i = ProgPoW_REGS - ​1​; i > ​0​; i--)

 {

 ​int​ j = ​kiss99​(prog_rnd) % (i + ​1​);

 ​swap​(mix_seq[i], mix_seq[j]);

 }

 ​return​ prog_rnd;

}

The math operations that merge values into the mix data are ones chosen to maintain
entropy.

// Merge new data from b into the value in a

// Assuming A has high entropy only do ops that retain entropy

// even if B is low entropy

// (IE don't do A&B)

void​ ​merge​(​uint32_t​ &a, ​uint32_t​ b, ​uint32_t​ r)

{

 ​switch​ (r % ​4​)

 {

 ​case​ ​0​: a = (a * ​33​) + b; ​break​;

 ​case​ ​1​: a = (a ^ b) * ​33​; ​break​;

 ​case​ ​2​: a = ​ROTL32​(a, ((r >> ​16​) % ​32​)) ^ b; ​break​;

 ​case​ ​3​: a = ​ROTR32​(a, ((r >> ​16​) % ​32​)) ^ b; ​break​;

 }

}

The math operations chosen for the random math are ones that are easy to implement
in CUDA and OpenCL, the two main programming languages for commodity GPUs.

// Random math between two input values

uint32_t​ ​math​(​uint32_t​ a, ​uint32_t​ b, ​uint32_t​ r)

{

 ​switch​ (r % ​11​)

 {

 ​case​ ​0​: ​return​ a + b;

 ​case​ ​1​: ​return​ a * b;

 ​case​ ​2​: ​return​ ​mul_hi​(a, b);

 ​case​ ​3​: ​return​ ​min​(a, b);

 ​case​ ​4​: ​return​ ​ROTL32​(a, b);

 ​case​ ​5​: ​return​ ​ROTR32​(a, b);

 ​case​ ​6​: ​return​ a & b;

 ​case​ ​7​: ​return​ a | b;

 ​case​ ​8​: ​return​ a ^ b;

 ​case​ ​9​: ​return​ ​clz​(a) + ​clz​(b);

 ​case​ ​10​: ​return​ ​popcount​(a) + ​popcount​(b);

 }

}

The main loop:

// Helper to get the next value in the per-program random sequence

#​define​ ​rnd​() (kiss99(prog_rnd))

// Helper to pick a random mix location

#​define​ ​mix_src​() (rnd() % ProgPoW_REGS)

// Helper to access the sequence of mix destinations

#​define​ ​mix_dst​() (mix_seq[(mix_seq_cnt++)%ProgPoW_REGS])

void​ ​ProgPoWLoop​(

 ​const​ ​uint64_t​ prog_seed,

 ​const​ ​uint32_t​ loop,

 ​uint32_t​ mix[ProgPoW_LANES][ProgPoW_REGS],

 ​const​ ​uint64_t​ *g_dag,

 ​const​ ​uint32_t​ *c_dag)

{

 ​// All lanes share a base address for the global load

 ​// Global offset uses mix[0] to guarantee it depends on the load result

 ​uint32_t​ offset_g = mix[loop%ProgPoW_LANES][​0​] % DAG_SIZE;

 ​// Lanes can execute in parallel and will be convergent

 ​for​ (​int​ l = ​0​; l < ProgPoW_LANES; l++)

 {

 ​// global load to sequential locations

 ​uint64_t​ data64 = g_dag[offset_g + l];

 ​// initialize the seed and mix destination sequence

 ​int​ mix_seq[ProgPoW_REGS];

 ​int​ mix_seq_cnt = ​0​;

 ​kiss99_t​ prog_rnd = ​ProgPoWInit​(prog_seed, mix_seq);

 ​uint32_t​ offset, data32;

 ​int​ max_i = ​max​(ProgPoW_CNT_CACHE, ProgPoW_CNT_MATH);

 ​for​ (​int​ i = ​0​; i < max_i; i++)

 {

 ​if​ (i < ProgPoW_CNT_CACHE)

 {

 ​// Cached memory access

 ​// lanes access random location

 offset = mix[l][​mix_src​()] % ProgPoW_CACHE_WORDS;

 data32 = c_dag[offset];

 ​merge​(mix[l][​mix_dst​()], data32, ​rnd​());

 }

 ​if​ (i < ProgPoW_CNT_MATH)

 {

 ​// Random Math

 data32 = ​math​(mix[l][​mix_src​()], mix[l][​mix_src​()], ​rnd​());

 ​merge​(mix[l][​mix_dst​()], data32, ​rnd​());

 }

 }

 ​// Consume the global load data at the very end of the loop

 ​// Allows full latency hiding

 ​merge​(mix[l][​0​], data64, ​rnd​());

 ​merge​(mix[l][​mix_dst​()], data64>>​32​, ​rnd​());

 }

}

Team Background

The team that created ProgPoW has backgrounds in designing production ASICs;
production hardware systems; and in optimizing miners, drivers, and firmware for mining
performance.

Evaluation Plan

This algorithm should be evaluated against maximum potential ASIC efficiency gain
metric described in the technical approach section.

As the algorithm nearly fully utilizes GPU functions in a natural way, a successful
implementation will reflect relative GPU performance and power consumption that is
similar to other gaming and graphics applications on the same architectures.

This PoW algorithm was tested against six different models from two different
manufacturers. Selected models span two different chips and memory types from each
manufacturer (Polaris20-GDDR5 and Vega10-HBM2 for AMD; GP104-GDDR5 and
GP102-GDDR5X for NVIDIA). The average hashrate results are listed below. Additional
tests are ongoing.

Model Hashrate (MH/s)

RX580 9.4

Vega56 16.6

Vega64 18.7

GTX1070Ti 13.1

GTX1080 14.9

GTX1080Ti 21.8

Security Considerations

This algorithm is not backwards compatible with the existing Equihash implementation,
and will require a fork for adoption. Furthermore, the network hashrate will change
dramatically as the units of compute is re-based to this new algorithm.

The articles linked below go into more analysis on why an algorithm tied to commodity
hardware provides the be incentives for decentralization and thus the best security

https://medium.com/p/da9f0512dad9

https://medium.com/p/d39078079186

Programmable hardware is the core of the question of how best to decentralize
proof-of-work mining. However, it’s a balancing act of carefully administered
parameters. Highly specialized hardware incentivizes protection of the value of the
hardware over the value of the network. Highly generalized hardware is hard to design
algorithms for, hard to optimize, and hard to protect from botnets.

Schedule

Sample code posted: 2018 May 1 (ProgPoW algorithm ​source​)

Open review period: 2018 May 1 - 2018 Aug 15

https://github.com/ifdefelse/ProgPOW

The collaboration repository, current private at https://github.com/ifdefelse/zcash, will be
made public on 2018 July 1.

First miner and client implementation for ZCash complete on 2018 Aug 1.

Review and testing complete on 2018 September 1.

Budget and Justification

The current team will remain unpaid. Beyond the current team, we will add 2 more
people for a short duration to help accelerate and review the development process.

We are asking for funding for $50k for 2.5 person-months divided into:
1. $20k for one person-month on client implementation and review
2. $20k for one person-month on mining development and kernel review
3. $10k for two person-weeks as a revision buffer.

The team will disclose the address of the holding wallet in order to keep the process
transparent. External persons to be funded and work progress will be documented on
the associated Github repository. Expenditures will be paid 50% in advance of each
work item above and 50% when the work is complete (committed to our repository and
fully tested).

Work is still proceeding from the original team. If the original team is able to complete
more of the work before Grant funds are first issued in July, we will reduce this funding
request or return the unused funds to the Zcash Foundation.

Contact

Please contact ifdefelse@protonmail.com

