Skip to content

Latest commit

 

History

History
107 lines (86 loc) · 3.59 KB

README.md

File metadata and controls

107 lines (86 loc) · 3.59 KB

average_prosody

Code for paper titled "Using generative modelling to produce varied intonation for speech synthesis" submitted to the Speech Synthesis Workshop.

Speech samples are available at zackhodari.github.io/SSW_2019_average_prosody.

The models defined in this repo should be run using the Morgana toolkit.

Data setup

Extraction with tts_data_tools currently requires wavfiles at the desired frame-rate (16kHz in the paper), and label files with time alignments (label_state_align).

If you want to prepare your own data to use with Morgana you will need a directory for each data split (e.g. train). Each of these must contain individual directories for each feature being loaded, this will then be loaded by the morgana.data._DataSource instances created within the model file, you can write your own data sources to load any file type you need. See Morgana's data loading for more details.

pip install git+https://github.com/zackhodari/tts_data_tools

cd ~/data/Blizzard2017

tdt_process_dataset \
    --lab_dir label_state_align \
    --wav_dir wav_16000 \
    --out_dir train \
    --question_file questions-unilex_dnn_600.hed \
    --id_list train_file_id_list.scp \
    --state_level \
    --subphone_feat_type full \
    --calculate_normalisation \
    --normalisation_of_deltas

tdt_process_dataset \
    --lab_dir label_state_align \
    --wav_dir wav_16000 \
    --out_dir valid \
    --question_file questions-unilex_dnn_600.hed \
    --id_list valid_file_id_list.scp \
    --state_level \
    --subphone_feat_type full

Usage

pip install git+https://github.com/zackhodari/morgana

git clone https://github.com/ZackHodari/average_prosody.git
cd average_prosody
mkdir experiments

python f0_RNN.py --experiment_name RNN \
    --data_root ~/data/Blizzard2017 \
    --train_dir train --train_id_list train_file_id_list.scp \
    --valid_dir valid --valid_id_list valid_file_id_list.scp \
    --end_epoch 100 \
    --num_data_threads 4 \
    --learning_rate 0.005 \
    --batch_size 32 \
    --lr_schedule_name noam \
    --lr_schedule_kwargs "{'warmup_steps': 1000}"

python f0_RNN_scaled.py --experiment_name RNN_scaled \
    --data_root ~/data/Blizzard2017 \
    --no-train \
    --checkpoint_path experiments/RNN/checkpoints/epoch_30.pt
    --valid_dir valid --valid_id_list valid_file_id_list.scp \
    --num_data_threads 4 \
    --batch_size 32

python f0_MDN.py --experiment_name MDN \
    --data_root ~/data/Blizzard2017 \
    --train_dir train --train_id_list train_file_id_list.scp \
    --valid_dir valid --valid_id_list valid_file_id_list.scp \
    --end_epoch 100 \
    --num_data_threads 4 \
    --learning_rate 0.005 \
    --batch_size 32 \
    --lr_schedule_name noam \
    --lr_schedule_kwargs "{'warmup_steps': 1000}" \
    --model_kwargs "{'var_floor': 1e-4}"

python f0_VAE.py --experiment_name VAE \
    --data_root ~/data/Blizzard2017 \
    --train_dir train --train_id_list train_file_id_list.scp \
    --valid_dir valid --valid_id_list valid_file_id_list.scp \
    --test_dir valid --test_id_list valid_file_id_list.scp \
    --end_epoch 100 \
    --num_data_threads 4 \
    --learning_rate 0.005 \
    --batch_size 32 \
    --lr_schedule_name noam \
    --lr_schedule_kwargs "{'warmup_steps': 1600}" \
    --kld_wait_epochs 1 \
    --kld_warmup_epochs 40 \
    --model_kwargs "{'kld_weight': 0.01}"