-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_workflow.py
1126 lines (967 loc) · 42.2 KB
/
experiment_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os.path
import moviepy.editor as mp
import numpy as np
import librosa
import pandas as pd
import os
from jiwer import wer
from keras.utils.vis_utils import plot_model
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras import optimizers
import model_io_functions
from sklearn.utils import shuffle
from sklearn.linear_model import LogisticRegression, Perceptron
from sklearn.metrics import accuracy_score, multilabel_confusion_matrix
from sklearn.feature_extraction.text import CountVectorizer
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten, Dropout, Activation
from keras.layers import Conv1D, MaxPooling1D
import matplotlib.pyplot as plt
import time
from keras.backend import clear_session
from sklearn import model_selection, linear_model, metrics, svm
import speech_recognition as sr
modelHistoryData = pd.DataFrame(columns=["loss", "accuracy", "val_loss", "val_accuracy", "date", "model", "train_length", "test_length"])
# Plot the CNN History of a model (train/test accuracy and train/test loss)
def plot_history(titleDetail, history, saveImgPath):
plt.style.use('ggplot')
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
x = range(1, len(acc) + 1)
plt.figure(figsize=(10, 5))
plt.plot(x, acc, 'royalblue', label='Training acc')
plt.plot(x, val_acc, 'r', label='Validation acc')
#plt.title('Training and validation accuracy' + " " + titleDetail)
plt.legend()
plt.plot(x, loss, 'lightsteelblue', label='Training loss')
plt.plot(x, val_loss, 'rosybrown', label='Validation loss')
plt.title('CNN Train/Test History - ' + " " + titleDetail)
plt.xlabel("Epoch")
plt.ylabel("Accuracy/Loss")
plt.legend()
t = time.time()
plt.savefig(saveImgPath+"CNN_History_"+str(t)+".png")
plt.show()
# Transcribe a WAV file to text and return the result
def transcribe(audioFilePath):
try:
audioFile = sr.AudioFile(audioFilePath)
# Define the speech recognising method (Google, IBM..etc)
r = sr.Recognizer()
# Use the audio file as the source
with audioFile as source:
audio = r.record(source) # read the entire audio file
return r.recognize_google(audio)
except sr.UnknownValueError:
return "failed transcription"
# Calculate the word error rate
def calculateWER(transcribed, actual):
return wer(actual, transcribed)
# Translate the audio to text based on EMO_DB filename labels
def translate_EMODB_file(audioFilePath):
item = os.path.basename(audioFilePath)
if item[2:5] == "a01":
content = "The tablecloth is lying on the fridge"
elif item[2:5] == "a02":
content = "She wants to hand that in on Wednesday"
elif item[2:5] == "a04":
content = "I could tell him tonight"
elif item[2:5] == "a05":
content = "The black piece of paper is up there next to the piece of wood"
elif item[2:5] == "a07":
content = "It will be ready in seven hours"
elif item[2:5] == "b01":
content = "What kind of bags are there under the table"
elif item[2:5] == "b02":
content = "They just carried it up and now they're going down again"
elif item[2:5] == "b03":
content = "I used to go home on the weekends and visit Agnes"
elif item[2:5] == "b09":
content = "I want to take that away and then go have a drink with Karl"
elif item[2:5] == "b10":
content = "It will be in the place where we always put it."
else:
print("unknown translation:", item)
content = "unknown"
return content
def getSAVEEText(audioFilePath):
item = os.path.basename(audioFilePath)
return
def returnFileInfoRAVDESS(file):
emotion, fileList = labelRAVDESS([file])
name = os.path.basename(file)
# Utilise the naming convention to discern the spoken content (or labels)
nameSegments = name.split("-")
if nameSegments[4] == "01":
statement = "kids are talking by the door"
elif nameSegments[4] == "02":
statement = "dogs are sitting by the door"
else:
statement = "UNSURE"
print("Unsure what the statement was")
if len(emotion) == 0:
emotion = "Not Found - Unsupported Emotion"
return emotion, statement
return emotion.values, statement
def returnFileInfoSAVEE(file):
emotion, fileList = label_SAVEE([file])
if len(emotion) == 0:
emotion = "Not Found - Unsupported Emotion"
return emotion
return emotion.values
'''
*------------------------------------------------*
| |
| Affective Prosody (Audio) Model Functions |
| |
*------------------------------------------------*
'''
# Get all audio files in dirs and sub dirs
def getAllMP3Files(pathToSearch):
filePathList = []
for root, dirs, files in os.walk(pathToSearch):
for file in files:
# append the file name to the list
if file.endswith(".mp3"):
filePathList.append(os.path.join(root, file))
print("Found", len(filePathList), "mp3 files in", pathToSearch)
return filePathList
# Get all audio files in dirs and sub dirs
def getAllWavFiles(pathToSearch):
filePathList = []
for root, dirs, files in os.walk(pathToSearch):
for file in files:
# append the file name to the list
if file.endswith(".wav"):
filePathList.append(os.path.join(root, file))
print("Found", len(filePathList), "WAV files in", pathToSearch)
return filePathList
# # Setting Labels based on filenames - RAVDESS Labelling
# def labelRAVDESS(files):
# feeling_list = []
# labelledFiles = []
# utterances = []
# for item in files:
# itemPath = item
# item = os.path.basename(item)
# currentLength = len(feeling_list)
# if item[6:-16] == '02' and int(item[18:-4]) % 2 == 0:
# feeling_list.append('female_calm')
#
# elif item[6:-16] == '02' and int(item[18:-4]) % 2 == 1:
# feeling_list.append('male_calm')
# elif item[6:-16] == '03' and int(item[18:-4]) % 2 == 0:
# feeling_list.append('female_joy')
#
# elif item[6:-16] == '03' and int(item[18:-4]) % 2 == 1:
# feeling_list.append('male_joy')
# elif item[6:-16] == '04' and int(item[18:-4]) % 2 == 0:
# feeling_list.append('female_sad')
#
# elif item[6:-16] == '04' and int(item[18:-4]) % 2 == 1:
# feeling_list.append('male_sad')
#
# elif item[6:-16] == '05' and int(item[18:-4]) % 2 == 0:
# feeling_list.append('female_anger')
#
# elif item[6:-16] == '05' and int(item[18:-4]) % 2 == 1:
# feeling_list.append('male_anger')
#
# elif item[6:-16] == '06' and int(item[18:-4]) % 2 == 0:
# feeling_list.append('female_fear')
#
# elif item[6:-16] == '06' and int(item[18:-4]) % 2 == 1:
# feeling_list.append('male_fear')
# elif item[:1] == 'a':
# feeling_list.append('male_anger')
# elif item[:1] == 'f':
# feeling_list.append('male_fear')
# elif item[:1] == 'h':
# feeling_list.append('male_joy')
# # elif item[:1]=='n':
# # feeling_list.append('neutral')
# elif item[:2] == 'sa':
# feeling_list.append('male_sad')
#
# if currentLength < len(feeling_list):
# nameSegments = item.split("-")
# if nameSegments[4] == "01":
# statement = "kids are talking by the door"
# elif nameSegments[4] == "02":
# statement = "dogs are sitting by the door"
# else:
# statement = "UNSURE"
# utterances.append(statement)
# labelledFiles.append(itemPath)
#
# # Store the labels in a DataFrame made from the above feeling list
# labels = pd.DataFrame(feeling_list)
# utter = pd.DataFrame(utterances, columns=["feature"])
# df1 = createFeatureLabelDataFrame(utter, labels)
# df1.to_csv("../Datasets/RAVDESS/utterancesFull.csv", index=False)
#
# # Print the length of both our labels and our usable files
# print(len(feeling_list), "Labels")
# print(len(labelledFiles), "Usable Files")
#
# return labels, labelledFiles
def labelRAVDESS(files):
feeling_list = []
labelledFiles = []
utterances = []
for item in files:
itemPath = item
item = os.path.basename(item)
currentLength = len(feeling_list)
file = int(item[7:8]) - 1 # RAVDESS
feeling_list.append(file)
if currentLength < len(feeling_list):
nameSegments = item.split("-")
if nameSegments[4] == "01":
statement = "kids are talking by the door"
elif nameSegments[4] == "02":
statement = "dogs are sitting by the door"
else:
statement = "UNSURE"
utterances.append(statement)
labelledFiles.append(itemPath)
# Store the labels in a DataFrame made from the above feeling list
labels = pd.DataFrame(feeling_list)
utter = pd.DataFrame(utterances, columns=["feature"])
df1 = createFeatureLabelDataFrame(utter, labels)
df1.to_csv("../Datasets/RAVDESS/utterancesFull.csv", index=False)
# Print the length of both our labels and our usable files
print(len(feeling_list), "Labels")
print(len(labelledFiles), "Usable Files")
return labels, labelledFiles
# Setting Labels based on filenames - EMO_DB Labelling
def label_EMO_DB(files):
feeling_list = []
labelledFiles = []
utterances = []
# List of ID's that correspond to male actors
maleIds = ["03", "10", "11", "12", "15"]
femaleIDs = ["08", "09", "13", "14", "16"]
for item in files:
itemPath = item
item = os.path.basename(item)
currentLength = len(feeling_list)
# Discern male or female actor
if item[0:2] in maleIds:
gender = "male"
elif item[0:2] in femaleIDs:
gender = "female"
else:
print("unknown gender:", item)
gender = "unknown"
# Discern the exhibited emotion
if item[5] == "W":
feeling_list.append(gender+"_anger")
elif item[5] == "L":
feeling_list.append(gender+"_boredom")
elif item[5] == "E":
feeling_list.append(gender+"_disgust")
elif item[5] == "A":
feeling_list.append(gender+"_fear")
elif item[5] == "F":
feeling_list.append(gender+"_joy")
elif item[5] == "T":
feeling_list.append(gender+"_sad")
elif item[5] == "N":
feeling_list.append(gender + "_neutral")
else:
print("Emotion labelling issue with file:", item)
if currentLength < len(feeling_list):
utterances.append(translate_EMODB_file(itemPath))
labelledFiles.append(itemPath)
# Store the labels in a DataFrame made from the above feeling list
labels = pd.DataFrame(feeling_list)
utter = pd.DataFrame(utterances, columns=["feature"])
df1 = createFeatureLabelDataFrame(utter, labels)
df1.to_csv("../Datasets/EMO_DB/utterancesFull.csv", index=False)
# Print the length of both our labels and our usable files
print(len(feeling_list), "Labels")
print(len(labelledFiles), "Usable Files")
return labels, labelledFiles
# Setting Labels based on filenames - EMO_DB Labelling
def label_SAVEE(files):
feeling_list = []
labelledFiles = []
utterances = []
for item in files:
itemPath = item
item = os.path.basename(item)
currentLength = len(feeling_list)
# Discern the exhibited emotion 'a', 'd', 'f', 'h', 'n', 'sa' and 'su' (anger, disust, fear, happy, neutral, sad, surprised)
if item[0] == "a":
feeling_list.append(0)
elif item[0] == "d":
feeling_list.append(1)
elif item[0] == "f":
feeling_list.append(2)
elif item[0] == "h":
feeling_list.append(3)
elif item[0] == "n":
feeling_list.append(4)
elif item[0:2] == "sa":
feeling_list.append(5)
elif item[0:2] == "su":
feeling_list.append(6)
else:
print("Emotion labelling issue with file:", item)
if currentLength < len(feeling_list):
content = transcribe(itemPath)
utterances.append(content)
labelledFiles.append(itemPath)
# Store the labels in a DataFrame made from the above feeling list
labels = pd.DataFrame(feeling_list)
utter = pd.DataFrame(utterances, columns=["feature"])
df1 = createFeatureLabelDataFrame(utter, labels)
df1.to_csv("../Datasets/SAVEE/utterancesFull.csv", index=False)
# Print the length of both our labels and our usable files
print(len(feeling_list), "Labels")
print(len(labelledFiles), "Usable Files")
return labels, labelledFiles
# Setting Labels based on filenames - MELD Labelling
def label_MELD(files):
feeling_list = []
utterances = []
labelledFiles = []
dfDev = pd.read_csv("D:/MELD.Raw.tar/MELD.Raw/dev_sent_emo.csv", usecols=["Emotion","Sentiment","Dialogue_ID","Utterance_ID", "Utterance"])
dfTrain = pd.read_csv("D:/MELD.Raw.tar/MELD.Raw/train.tar/train/train_sent_emo.csv",usecols=["Emotion", "Sentiment", "Dialogue_ID", "Utterance_ID", "Utterance"])
emotionCount = {}
for item in files:
itemPath = item
if itemPath.find("MELD-Train") != -1:
df = dfTrain
else:
df = dfDev
item = os.path.basename(item)
currentLength = len(feeling_list)
temp = item.split("_")
dialogueID = str(temp[0]).replace('dia', '')
utteranceID = str(temp[1]).replace('utt', '')
utteranceID = utteranceID.replace('.mp3', '')
emotion = df[(df["Dialogue_ID"] == int(dialogueID)) & (df["Utterance_ID"] == int(utteranceID))]["Emotion"]
utt = df[(df["Dialogue_ID"] == int(dialogueID)) & (df["Utterance_ID"] == int(utteranceID))]["Utterance"]
if len(emotion.values) != 0:
if str(emotion.values) in emotionCount:
if emotionCount[str(emotion.values)] > -1:
feeling_list.append(emotion.values)
utterances.append(utt.values)
emotionCount[str(emotion.values)] += 1
else:
emotionCount[str(emotion.values)] = 1
feeling_list.append(emotion.values)
utterances.append(utt.values)
print(emotionCount)
if currentLength < len(feeling_list):
labelledFiles.append(itemPath)
# Store the labels in a DataFrame made from the above feeling list
labels = pd.DataFrame(feeling_list)
utter = pd.DataFrame(utterances, columns=["feature"])
df1 = createFeatureLabelDataFrame(utter, labels)
df1.to_csv("../Datasets/MELD/utterancesFull.csv", index=False)
# Print the length of both our labels and our usable files
print(len(feeling_list), "Labels")
print(len(labelledFiles), "Usable Files")
return labels, labelledFiles
# Extract the relevant features from the audio samples
def extractFeatures(fileList, res_type, duration, sampleRate, startOffset, inMono, num_mfcc):
df = pd.DataFrame(columns=['feature'])
bookmark = 0
for index, y in enumerate(fileList):
X, sample_rate = librosa.load(y, res_type=res_type, duration=duration, sr=sampleRate, offset=startOffset, mono=inMono)
sample_rate = np.array(sample_rate)
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)
zcR = np.mean(librosa.feature.zero_crossing_rate(y=X).T, axis=0)
chroma = np.mean(librosa.feature.chroma_cens(y=X).T, axis=0)
feature = np.concatenate((mfccs, zcR))
feature = np.concatenate((feature, chroma))
#[float(i) for i in feature]
#feature1=feature[:135]
df.loc[bookmark] = [feature]
bookmark = bookmark+1
# Display 5 entries of the features
print("Feature Extraction:")
print(df[:5])
return df
# BASELINE FEATURES Extract the relevant features from the audio samples
def baselineExtractFeatures(fileList, res_type, duration, sampleRate, startOffset, inMono, num_mfcc):
df = pd.DataFrame(columns=['feature'])
bookmark = 0
for index, y in enumerate(fileList):
X, sample_rate = librosa.load(y, res_type=res_type, duration=duration, sr=sampleRate, offset=startOffset, mono=inMono)
sample_rate = np.array(sample_rate)
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)
df.loc[bookmark] = [mfccs]
bookmark = bookmark+1
# Display 5 entries of the features
print("Feature Extraction:")
print(df[:5])
return df
# Combine features and labels DataFrames into one
def createFeatureLabelDataFrame(features, labels):
# Adds features and labels to one DataFrame
df = pd.DataFrame(features['feature'].values.tolist())
labels = labels.rename(columns={0: "label"})
combinedDf = pd.concat([df, labels], axis=1)
# Shuffle the DataFrame
#combinedDf = shuffle(combinedDf)
# Fill any NA values with 0
combinedDf = combinedDf.fillna(0)
print(combinedDf)
return combinedDf
# Return the train/test split and fitted encoder
def createTrainTestFromDataset(dataset, trainTestSplit):
# Split features and labels
datasetCopy = dataset
labels = datasetCopy['label']
features = datasetCopy.drop(columns='label')
# Split the train/test by passed percentage
# Split into train and test
trainIndex = int(len(features) * trainTestSplit)
train_features = features[:trainIndex]
train_labels = labels[:trainIndex]
test_features = features[trainIndex + 1:-1]
test_labels = labels[trainIndex + 1:-1]
lb = LabelEncoder()
y_train = np_utils.to_categorical(lb.fit_transform(train_labels))
y_test = np_utils.to_categorical(lb.fit_transform(test_labels))
return train_features, test_features, y_train, y_test, lb
# Create the affective prosody model (returns model)
def createAPModel(inputDim, outputDim, lossMethod, optimizer, metricsList):
model = Sequential()
model.add(Conv1D(256, 5, padding='same',
input_shape=inputDim))
model.add(Activation('relu'))
model.add(Conv1D(128, 5, padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(64, 5, padding='same'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(outputDim))
model.add(Activation('softmax'))
model.compile(loss=lossMethod, optimizer=optimizer, metrics=metricsList)
return model
# Create the new Baseline affective prosody model (returns model)
def createNewBaseAPModel(inputDim, outputDim, lossMethod, optimizer, metricsList):
model = Sequential()
model.add(Conv1D(128, 5, padding='same',
input_shape=inputDim))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(128, 5, padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(outputDim))
model.add(Activation('softmax'))
print(model.summary())
model.compile(loss=lossMethod, optimizer=optimizer, metrics=metricsList)
return model
# Create the affective prosody model (returns model)
def createBASELINEAPModel(inputDim, outputDim, lossMethod, optimizer, metricsList):
model = Sequential()
model.add(Conv1D(256, 5, padding='same',
input_shape=inputDim))
model.add(Activation('relu'))
model.add(Conv1D(128, 5, padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(128, 5, padding='same', ))
model.add(Activation('relu'))
model.add(Conv1D(128, 5, padding='same', ))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(outputDim))
model.add(Activation('softmax'))
model.compile(loss=lossMethod, optimizer=optimizer, metrics=metricsList)
return model
# Fit the model to our data (returns the model history)
def model_fit_CNN(model, x_train, y_train, batchSize, epochs, x_test, y_test):
# Changing Dimension for CNN model
x_train = np.expand_dims(x_train, axis=2)
x_test = np.expand_dims(x_test, axis=2)
cnnhistory = model.fit(x_train, y_train, batch_size=batchSize, epochs=epochs, validation_data=(x_test, y_test))
return cnnhistory
# Predict classifications returns a DataFrame of predicted labels (Strings)
def model_predict(model, x_test, batchSize, verbosity, labelEncoder):
# Changing Dimension for CNN model
x_test = np.expand_dims(x_test, axis=2)
# Get predictions
preds = model.predict(x_test, batch_size=batchSize, verbose=verbosity)
predWeights = preds
preds = preds.argmax(axis=1)
og_preds = preds.astype(int).flatten()
preds = (labelEncoder.inverse_transform(og_preds))
return pd.DataFrame({'predictedValues': preds}), og_preds, predWeights
# Feature extraction and file labelling procedure RAVDESS
def create_RAVDESS_dataset(savePath, numC, isBaseline):
if savePath.find("RAVDESS") != -1:
wavFilePaths = getAllWavFiles("../Datasets/RAVDESS")
labelList, labelledFilePaths = labelRAVDESS(wavFilePaths)
else:
wavFilePaths = getAllWavFiles("../Datasets/SAVEE/archive/AudioData/AudioData")
labelList, labelledFilePaths = label_SAVEE(wavFilePaths)
if isBaseline:
featuresList = baselineExtractFeatures(labelledFilePaths, "kaiser_best", 3, 48000, 0, True, numC)
else:
featuresList = extractFeatures(labelledFilePaths, "kaiser_best", 3, 48000, 0, True, numC)
labelledFeatures = createFeatureLabelDataFrame(featuresList, labelList)
if savePath:
pd.DataFrame(labelledFeatures).to_csv(savePath, index=False)
return labelledFeatures
# Feature extraction and file labelling procedure EMO_DB
def create_EMODB_dataset(savePath, numC, isBaseline):
wavFilePaths = getAllWavFiles("../Datasets/EMO_DB")
labelList, labelledFilePaths = label_EMO_DB(wavFilePaths)
if isBaseline:
featuresList = baselineExtractFeatures(labelledFilePaths, "kaiser_best", 8, 48000, 0, True, numC)
else:
featuresList = extractFeatures(labelledFilePaths, "kaiser_best", 8, 48000, 0, True, numC)
labelledFeatures = createFeatureLabelDataFrame(featuresList, labelList)
if savePath:
pd.DataFrame(labelledFeatures).to_csv(savePath, index=False)
return labelledFeatures
# Feature extraction and file labelling procedure MELD
def create_MELD_dataset(savePath, numC, isBaseline):
mp3FilePaths = getAllMP3Files("E:\FYP-Implementation\Datasets\MELD")
'''for mp4 in mp4FilePaths:
clip = mp.VideoFileClip(mp4)
clip.audio.write_audiofile("../Datasets/MELD/"+str(os.path.basename(mp4).replace(".mp4", ".mp3")))'''
labelList, labelledFilePaths = label_MELD(mp3FilePaths)
if isBaseline:
featuresList = baselineExtractFeatures(labelledFilePaths, "kaiser_best", 3, 48000, 0, True, numC)
else:
featuresList = extractFeatures(labelledFilePaths, "kaiser_best", 3, 48000, 0, True, numC)
labelledFeatures = createFeatureLabelDataFrame(featuresList, labelList)
if savePath:
pd.DataFrame(labelledFeatures).to_csv(savePath, index=False)
return labelledFeatures
# Encode the classification labels, return both the labels and the encoder
def encodeLabels(dataset):
lb = LabelEncoder()
labels = np_utils.to_categorical(lb.fit_transform(dataset['label']))
return labels, lb
# Train, Test the model, plot the accuracy results
def runKFoldAPModel(plotName, featureData, labelData, encoder, oldLabel, isBaseline, mHistDF):
# K-fold init
kf = model_selection.KFold(n_splits=5, shuffle=True)
iteration = 0
totalAcc = 0
bestAcc = 0
bestModel = ""
mX = []
mY = []
os.mkdir("Model Results/"+plotName)
f = open("Model Results/"+plotName+"/modelRes.txt", "w")
for trainIndex, testIndex, in kf.split(featureData):
xTrain = featureData[trainIndex]
yTrain = labelData[trainIndex]
xTest = featureData[testIndex]
yTest = labelData[testIndex]
print(xTrain.shape)
print(xTest.shape)
print(yTrain.shape)
print(yTest.shape)
if isBaseline:
AP_Model = createNewBaseAPModel((xTrain.shape[1], 1), yTrain.shape[1], "categorical_crossentropy", "rmsprop", ['accuracy'])
else:
#AP_Model = createAPModel((xTrain.shape[1], 1), yTrain.shape[1], "categorical_crossentropy", "adam", ['accuracy'])
AP_Model = createNewBaseAPModel((xTrain.shape[1], 1), yTrain.shape[1], "categorical_crossentropy", "rmsprop", ['accuracy'])
modelHistory = model_fit_CNN(AP_Model, xTrain, yTrain, 16, 1000, xTest, yTest)
t = time.time()
t = time.ctime(t)
details = {}
details["date"] = t
details["model"] = plotName+str(iteration)
details["loss"] = [modelHistory.history["loss"]]
details["accuracy"] = [modelHistory.history["accuracy"]]
details["val_loss"] = [modelHistory.history["val_loss"]]
details["val_accuracy"] = [modelHistory.history["val_accuracy"]]
details["train_length"] = len(xTrain)
details["test_length"] = len(xTest)
mHistDF = mHistDF.append(pd.DataFrame.from_dict(details))
plot_history(plotName+str(iteration), modelHistory, "Model Results/"+plotName+"/")
predictions, actualPreds, predictionWeights = model_predict(AP_Model, xTest, 16, 1, encoder)
mX.extend(predictionWeights)
mY.extend(oldLabel[testIndex])
print("\nPredictions:\n", predictions)
score = metrics.accuracy_score(labelData[testIndex].argmax(axis=1), actualPreds)
if score > bestAcc:
bestModel = AP_Model
bestAcc = score
totalAcc += score
print("Model Accuracy:", score)
print("Conf Matrix:\n", metrics.confusion_matrix(oldLabel[testIndex], predictions))
print(metrics.classification_report(oldLabel[testIndex], predictions))
f.writelines(np.array2string(metrics.confusion_matrix(oldLabel[testIndex], predictions)))
f.write("\n")
f.writelines(metrics.classification_report(oldLabel[testIndex], predictions))
f.write("\nAccuracy: "+str(score)+"\n")
clear_session()
# Calculate the spectrum of emotions
for val in predictionWeights:
total = sum(val)
percentages = []
for v in val:
percentages.append(str(round((v/total) * 100, 2)) + "%")
#print(percentages)
iteration += 1
print("Avg Accuracy:", totalAcc/5)
f.write("Avg Accuracy: " + str(totalAcc/5) + "\n")
f.close()
return bestModel, mHistDF, mX, np.array(mY)
# Train, Test the combined model system
def runKFoldCombinedModel(plotName, featureData, labelData, encoder, oldLabel, isBaseline, mHistDF, logRegModel, textData, vectorizerObj, textLabelEncoder):
# K-fold init
kf = model_selection.KFold(n_splits=5, shuffle=True)
iteration = 0
totalAcc = 0
bestAcc = 0
bestModel = ""
mX = []
mY = []
os.mkdir("Model Results/"+plotName)
f = open("Model Results/"+plotName+"/modelRes.txt", "w")
for trainIndex, testIndex, in kf.split(featureData):
xTrain = featureData[trainIndex]
yTrain = labelData[trainIndex]
xTest = featureData[testIndex]
yTest = labelData[testIndex]
textXTest = textData[testIndex]
if isBaseline:
AP_Model = createBASELINEAPModel((xTrain.shape[1], 1), yTrain.shape[1], "categorical_crossentropy", "adam", ['accuracy'])
else:
AP_Model = createAPModel((xTrain.shape[1], 1), yTrain.shape[1], "categorical_crossentropy", "adam", ['accuracy'])
modelHistory = model_fit_CNN(AP_Model, xTrain, yTrain, 16, 50, xTest, yTest)
t = time.time()
t = time.ctime(t)
details = {}
details["date"] = t
details["model"] = plotName+str(iteration)
details["loss"] = [modelHistory.history["loss"]]
details["accuracy"] = [modelHistory.history["accuracy"]]
details["val_loss"] = [modelHistory.history["val_loss"]]
details["val_accuracy"] = [modelHistory.history["val_accuracy"]]
details["train_length"] = len(xTrain)
details["test_length"] = len(xTest)
mHistDF = mHistDF.append(pd.DataFrame.from_dict(details))
plot_history(plotName+str(iteration), modelHistory, "Model Results/"+plotName+"/")
predictions, actualPreds, predictionWeights = model_predict(AP_Model, xTest, 16, 1, encoder)
textXTest = vectorizerObj.transform(textXTest)
textPreds = logRegModel.predict(textXTest)
textPreds = np_utils.to_categorical(lb.fit_transform(textPreds))
mergedPreds = np.concatenate((predictionWeights, textPreds), axis=1)
mX.extend(mergedPreds)
mY.extend(oldLabel[testIndex])
print("\nPredictions:\n", predictions)
score = metrics.accuracy_score(labelData[testIndex].argmax(axis=1), actualPreds)
if score > bestAcc:
bestModel = AP_Model
bestAcc = score
totalAcc += score
print("Model Accuracy:", score)
print("Conf Matrix:\n", metrics.confusion_matrix(oldLabel[testIndex], predictions))
print(metrics.classification_report(oldLabel[testIndex], predictions))
f.writelines(np.array2string(metrics.confusion_matrix(oldLabel[testIndex], predictions)))
f.write("\n")
f.writelines(metrics.classification_report(oldLabel[testIndex], predictions))
f.write("\nAccuracy: "+str(score)+"\n")
clear_session()
# Calculate the spectrum of emotions
for val in predictionWeights:
total = sum(val)
percentages = []
for v in val:
percentages.append(str(round((v/total) * 100, 2)) + "%")
#print(percentages)
iteration += 1
print("Avg Accuracy:", totalAcc/5)
f.write("Avg Accuracy: " + str(totalAcc/5) + "\n")
f.close()
return bestModel, mHistDF, mX, np.array(mY)
'''
*------------------------------------------------*
| |
| NLP / Text Model Functions |
| |
*------------------------------------------------*
'''
# Extract the sentences and their labels from a dataset
def extractTextFeaturesAndLabels(dataset):
sentences = dataset["text"].values
labels = dataset['label'].values
return sentences, labels
# Change labels into categorical values (returns train labels, test labels and the encoder)
def encodeTextLabels(trainLabels, testLabels):
lb = LabelEncoder()
trainLabels = np_utils.to_categorical(lb.fit_transform(trainLabels))
testLabels = np_utils.to_categorical(lb.fit_transform(testLabels))
return trainLabels, testLabels, lb
# Create the vectorizer object, fitted to the input data
def createVectorizer(lowercase, dataToFit):
# Vectorizer Definition
vectorizer = CountVectorizer(min_df=0, lowercase=lowercase)
vectorizer.fit(dataToFit)
return vectorizer
# Convert the train and test sentences into vectors
def vectorizeSentences(trainSentences, testSentences, vectorizer):
X_train = vectorizer.transform(trainSentences)
X_test = vectorizer.transform(testSentences)
return X_train, X_test
# Create and return a fitted LogisticRegression classifier
def createLogRegTextClassifier(maxIterations, X_train, Y_train):
classifier = LogisticRegression(max_iter=maxIterations)
classifier.fit(X_train, Y_train)
return classifier
# Predict the classes using the classifier outputs: amount of predictions, accuracy score and confusion matrix
def predictText(classifier, X_test, Y_test):
preds = classifier.predict(X_test)
print(len(preds))
print("LogReg Accuracy:", accuracy_score(Y_test, preds))
print("Confusion Matrix:")
print(multilabel_confusion_matrix(Y_test, preds))
# Train, Test the model, plot the accuracy results
def runKFoldTextModel(featureData, labelData, isCNN):
# K-fold init
kf = model_selection.KFold(n_splits=5, shuffle=True)
iteration = 0
for trainIndex, testIndex, in kf.split(featureData):
xTrain = featureData[trainIndex]
yTrain = labelData[trainIndex]
xTest = featureData[testIndex]
yTest = labelData[testIndex]
# yTrain, yTest, encoder = encodeTextLabels(yTrain, yTest)
vectorizerObj = createVectorizer(False, xTrain)
xTrain, xTest = vectorizeSentences(xTrain, xTest, vectorizerObj)
model = createLogRegTextClassifier(1000, xTrain, yTrain)
predictText(model, xTest, yTest)
clear_session()
iteration += 1
return model, vectorizerObj
def testTextClassifier(dataset, classifier, vectorizer):
if dataset == "../Datasets/RAVDESS":
# For further testing get all ravdess files
files = getAllWavFiles("../Datasets/RAVDESS")
labels, labelledFiles = labelRAVDESS(files)
werTotal = 0
c = 0
w = 0
for f in labelledFiles:
res = transcribe(f)
pred = classifier.predict(vectorizer.transform([res]))
emo, txt = returnFileInfoRAVDESS(f)
werTotal += calculateWER(res, txt)
cleanEmo = emo[0][0].split("_")
if cleanEmo[1] == pred[0]:
c += 1
else:
w += 1
print("\nTranscription")
print("Result:", res)
print("Actual:", txt)
print("\nEmotion Classification")
print("Result:", pred[0])
print("Actual:", emo[0][0])
print("\nWER TOTAL:", werTotal)
print(len(labelledFiles) / werTotal)
elif dataset == "../Datasets/SAVEE":
# For further testing get all ravdess files
files = getAllWavFiles("../Datasets/SAVEE")
labels, labelledFiles = label_SAVEE(files)
werTotal = 0
c = 0
w = 0
for f in labelledFiles:
res = transcribe(f)
pred = classifier.predict(vectorizer.transform([res]))
emo = returnFileInfoSAVEE(f)
#werTotal += calculateWER(res, txt)
if emo[0][0] == pred[0]:
c += 1
else:
w += 1
print("\nTranscription")
print("Result:", res)
#print("Actual:", txt)
print("\nEmotion Classification")
print("Result:", pred[0])
print("Actual:", emo[0][0])
else:
# For further testing get all ravdess files
files = getAllWavFiles("../Datasets/EMO_DB")
labels, labelledFiles = label_EMO_DB(files)
c = 0
w = 0
for f in labelledFiles:
res = translate_EMODB_file(f)
pred = classifier.predict(vectorizer.transform([res]))
temp = labels[0][c+w].split("_")
print("\nTranslation")
print("Result:", res)
print("\nEmotion Classification")
print("Result:", pred[0])
print("Actual:", temp)
if pred[0] == temp[1]:
c += 1
else:
w += 1
print("Correct Emotions:", c)
print("Wrong Emotions:", w)
print("Accuracy:", c / (w + c))
'''
*------------------------------------------------*
| |
| Test Affective Prosody Models |
| |
*------------------------------------------------*
'''
# M1 - RAVDESS -> CNN -> Emotional Classification
#create_RAVDESS_dataset("../Datasets/RAVDESS/mfcc3.csv")
#df = pd.read_csv("../Datasets/RAVDESS/mfcc3.csv")
#ravdessLabels = ["female_fearful", "male_fearful", "female_angry", "male_angry", "female_sad", "male_sad", "female_happy", "male_happy"]
#create_RAVDESS_dataset("../Datasets/SAVEE/mfcc3.csv")
#df = pd.read_csv("../Datasets/SAVEE/bestFeatures.csv")
#create_MELD_dataset("../Datasets/MELD/test.csv")
#df = pd.read_csv("../Datasets/MELD/test.csv")
# # Create and fit the logisitc regression model on the ISEARS dataset
# textTrainData = pd.read_csv("../Datasets/ISEAR.csv") # Emotion Range: [joy, fear, anger, sadness, disgust, shame, guilt]
# # Remove \n chars
# textTrainData["text"] = textTrainData["text"].str.replace("\n", "")
# # Remove unsupported emotions
# testableData = textTrainData[textTrainData["label"] != "shame"]
# testableData = testableData[testableData["label"] != "guilt"]
# testableData["label"] = testableData["label"].replace("sadness", "sad")
#
# # Fitting Log Reg Model to ISEARS Data
# sentences, Textlabels = extractTextFeaturesAndLabels(testableData)
# vec = createVectorizer(False, sentences)
# trainingFeatures = vec.transform(sentences)
#
# lb = LabelEncoder()
# #trainLabels = np_utils.to_categorical(lb.fit_transform(Textlabels))
# logRegModel = createLogRegTextClassifier(1000, trainingFeatures, Textlabels)
datasetNames = ["../Datasets/RAVDESS/baselineNew.csv"]
for dataset in datasetNames:
if dataset.find("baseline") != -1:
baseline = True
ext = "Baseline-"
numC = 13
else:
baseline = False