-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain-cls.py
703 lines (580 loc) · 32.9 KB
/
main-cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma
from datasets import build_dataset, MyTrainDataset, MyValDataset
from engine_cls import train_one_epoch, evaluate
from losses import DistillationLoss
from samplers import RASampler
from models import models_attn_tok_cls
import utils
import numpy.random as npr
def compute_forgetting_statistics(diag_stats, npresentations):
presentations_needed_to_learn = {}
unlearned_per_presentation = {}
margins_per_presentation = {}
first_learned = {}
cls_var_with_index = {} #return this for cls
for example_id, example_stats in diag_stats.items():
#print('example_id, example_stats',example_id, example_stats)
# Skip 'train' and 'test' keys of diag_stats
if not isinstance(example_id, str):
cls_var_with_index[example_id] = example_stats[3] #save var and indx to list
# Forgetting event is a transition in accuracy from 1 to 0
presentation_acc = np.array(example_stats[1][:npresentations])
transitions = presentation_acc[1:] - presentation_acc[:-1]
# Find all presentations when forgetting occurs
if len(np.where(transitions == -1)[0]) > 0:
unlearned_per_presentation[example_id] = np.where(
transitions == -1)[0] + 2
else:
unlearned_per_presentation[example_id] = []
# Find number of presentations needed to learn example,
# e.g. last presentation when acc is 0
if len(np.where(presentation_acc == 0)[0]) > 0:
presentations_needed_to_learn[example_id] = np.where(
presentation_acc == 0)[0][-1] + 1
else:
presentations_needed_to_learn[example_id] = 0
# Find the misclassication margin for each presentation of the example
margins_per_presentation = np.array(
example_stats[2][:npresentations])
# Find the presentation at which the example was first learned,
# e.g. first presentation when acc is 1
if len(np.where(presentation_acc == 1)[0]) > 0:
first_learned[example_id] = np.where(
presentation_acc == 1)[0][0]
else:
first_learned[example_id] = np.nan
return presentations_needed_to_learn, unlearned_per_presentation, margins_per_presentation, first_learned, cls_var_with_index
# Sorts examples by number of forgetting counts during training, in ascending order
# If an example was never learned, it is assigned the maximum number of forgetting counts
# If multiple training runs used, sort examples by the sum of their forgetting counts over all runs
#
# unlearned_per_presentation_all: list of dictionaries, one per training run
# first_learned_all: list of dictionaries, one per training run
# npresentations: number of training epochs
#
# Returns 2 numpy arrays containing the sorted example ids and corresponding forgetting counts
#
def sort_examples_by_forgetting(unlearned_per_presentation_all,
first_learned_all, npresentations, cls_presentations):
# Initialize lists
example_original_order = []
example_stats = []
example_cls_var = []
test=[]
for example_id in unlearned_per_presentation_all[0].keys():
# Add current example to lists
example_original_order.append(example_id)
example_stats.append(0)
# Iterate over all training runs to calculate the total forgetting count for current example
for i in range(len(unlearned_per_presentation_all)):
# Get all presentations when current example was forgotten during current training run
stats = unlearned_per_presentation_all[i][example_id]
# If example was never learned during current training run, add max forgetting counts
if np.isnan(first_learned_all[i][example_id]):
example_stats[-1] += npresentations
test.append((example_id, npresentations , np.average(cls_presentations[example_id])))
else:
example_stats[-1] += len(stats)
test.append((example_id, len(stats) , np.average(cls_presentations[example_id])))
test.sort(key=lambda x:(x[1],x[2]))
final_order_indx=[]
final_example_stats=[]
for e in test:
final_order_indx.append(e[0])
final_example_stats.append(e[1])
final_order_indx = np.array(final_order_indx)
final_example_stats = np.array(final_example_stats)
print('Number of unforgettable examples: {}'.format(
len(np.where(np.array(example_stats) == 0)[0])))
#return np.array(example_original_order)[np.argsort(example_stats)], np.sort(example_stats)
return final_order_indx, final_example_stats
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# Token-level Sparsity >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
parser.add_argument('--keep_ratio', type=float, default=0.7, help='Sparsity of Token')
# Attn-level Sparsity >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
parser.add_argument('--attn_ratio', type=float, default=0.3, help='Sparsity of Token')
# Example-level sparsity >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
parser.add_argument(
'--sorting-file',
default=None,
help=
'name of a file containing order of examples sorted by forgetting (default: "none", i.e. not sorted)'
)
parser.add_argument(
'--remove-n',
type=int,
default=0,
help='number of sorted examples to remove from training')
parser.add_argument(
'--keep-lowest-n',
type=int,
default=0,
help=
'number of sorted examples to keep that have the lowest score, equivalent to start index of removal, if a negative number given, remove random draw of examples'
)
parser.add_argument('--token-prune', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--data-sparse', action='store_true', default=False, help='Enabling distributed evaluation')
#parser.add_argument('--distill', action='store_true', default=False, help='Enabling distributed evaluation')
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
if args.distillation_type != 'none' and args.finetune and not args.eval:
raise NotImplementedError("Finetuning with distillation not yet supported")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
# ################################################# Dataset #################################################
#dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
#dataset_val, _ = build_dataset(is_train=False, args=args)
# remove 20%
random_shuffle = npr.permutation(np.arange(1281167))
train_example_idx = random_shuffle[:1281167 - 256233]
#full_example_idx = random_shuffle[:1281167]
removed_example_idx = random_shuffle[1281167 - 256233:]
dataset_train = MyTrainDataset(is_train=True, args=args,train_example_idx=train_example_idx)
dataset_val = MyValDataset(is_train=False, args=args)
dataset_remove = MyTrainDataset(is_train=True, args=args, train_example_idx=removed_example_idx)
args.nb_classes = 1000
print('len(dataset_train)',len(dataset_train)) #1024934
print('len(dataset_val)', len(dataset_val))
################################################# Training #################################################
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_remove = RASampler(
dataset_remove, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_remove = torch.utils.data.DistributedSampler(
dataset_remove, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_remove = torch.utils.data.RandomSampler(dataset_remove)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
# ################################################# Model #################################################
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
# finetune trained model
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
model.load_state_dict(checkpoint_model, strict=False)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# ################################################# Optimizer/ Loss #################################################
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = LabelSmoothingCrossEntropy()
if mixup_active:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
teacher_model = None
if args.distillation_type != 'none':
assert args.teacher_path, 'need to specify teacher-path when using distillation'
print(f"Creating teacher model: {args.teacher_model}")
teacher_model = create_model(
args.teacher_model,
pretrained=False,
num_classes=args.nb_classes,
global_pool='avg',
)
if args.teacher_path.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.teacher_path, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.teacher_path, map_location='cpu')
teacher_model.load_state_dict(checkpoint['model'])
teacher_model.to(device)
teacher_model.eval()
# wrap the criterion in our custom DistillationLoss, which
# just dispatches to the original criterion if args.distillation_type is 'none'
criterion = DistillationLoss(
criterion, teacher_model, args.distillation_type, args.distillation_alpha, args.distillation_tau
)
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.model_ema:
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
# *************** evaluation before training ***************
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
example_stats_train = {}
putback_batch = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
################################################# Sparse data #################################################
#data_loader_remove.sampler.set_epoch(epoch)
print('len(example_stats_train)', len(example_stats_train))
#if (epoch+1) % 30==0: #> 0:
if epoch == 30 * (putback_batch + 1):
#if epoch >0:
if putback_batch <= 4:
print('epoch',epoch)
unlearned_per_presentation_all, first_learned_all = [], []
_, unlearned_per_presentation, _, first_learned, cls_var_with_index = compute_forgetting_statistics(
example_stats_train, 30)
#loaded, args.epochs)
print('unlearned_per_presentation',len(unlearned_per_presentation))
print('first_learned',len(first_learned))
unlearned_per_presentation_all.append(
unlearned_per_presentation)
first_learned_all.append(first_learned)
# Sort examples by forgetting counts in ascending order, over one or more training runs
ordered_examples, ordered_values = sort_examples_by_forgetting(
unlearned_per_presentation_all, first_learned_all, 30, cls_var_with_index)
#print('max(ordered_examples)',max(ordered_examples))
print('epoch before ordered_examples len',len(ordered_examples))
#print('epoch before len(dataset_train.targets)',len(dataset_train.targets))
elements_to_remove = np.array(
ordered_examples)[args.keep_lowest_n:args.keep_lowest_n + args.remove_n]
# Remove the corresponding elements
print('elements_to_remove',len(elements_to_remove))
targets = [i.tolist() for i in elements_to_remove] #class
#print('targets', targets)
elements_to_remove = np.array(targets)
#print('len(elements_to_remove)',len(elements_to_remove))
#print('elements_to_remove',elements_to_remove)
print('before prune len(train_example_idx)', len(train_example_idx))
#print('train_example_idx',train_example_idx)
#print('elements_to_remove',elements_to_remove.tolist())
train_example_idx = np.setdiff1d(
#range(len(train_example_idx)), elements_to_remove)
train_example_idx , elements_to_remove)
print('prune len(train_example_idx)',len(train_example_idx))
#random shuffle removed_example_idx before grow
np.random.shuffle(removed_example_idx)
train_example_idx = np.concatenate((train_example_idx, removed_example_idx[args.keep_lowest_n:args.keep_lowest_n + args.remove_n]), axis=0)
removed_example_idx=removed_example_idx[args.keep_lowest_n + args.remove_n:]
putback_batch = putback_batch + 1
#add 5000 back to the training dataset from the originally removed 5000 data
#train_example_idx =np.concatenate((train_example_idx ,removed_example_idx[len(elements_to_remove)*putback_batch:len(elements_to_remove)*(putback_batch+1)]),axis=0)
#putback_batch=putback_batch+1
print('grow len(train_example_idx)',len(train_example_idx))
#add the removed 5000 to the removed dataset.
removed_example_idx=np.concatenate((removed_example_idx,elements_to_remove), axis=0)
print('new len(removed_example_idx)', len(removed_example_idx))
dataset_train = MyTrainDataset(is_train=True, args=args, train_example_idx=train_example_idx)
#dataset_val = MyValDataset(is_train=False, args=args)
#dataset_remove = MyTrainDataset(is_train=True, args=args, train_example_idx=removed_example_idx)
args.nb_classes = 1000
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
example_stats_train = {}
# ################################################# Training #################################################
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn, example_stats_train, train_example_idx,
set_training_mode=args.finetune == '', # keep in eval mode during finetuning,
args=args,
)
lr_scheduler.step(epoch)
# *************** save current model after one training epoch ***************
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'model_ema': get_state_dict(model_ema),
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
# *************** evaluation after one training epoch ***************
test_stats = evaluate(data_loader_val, model, device, args)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
# *************** save best model after one training epoch ***************
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir:
checkpoint_paths = [output_dir / 'best_checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'model_ema': get_state_dict(model_ema),
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
print(f'Max accuracy: {max_accuracy:.2f}%')
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)