-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathdataset.py
661 lines (607 loc) · 29 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import os
import random
import numpy as np
import torch
import soundfile as sf
import pickle
import time
import itertools
import multiprocessing
from tqdm.auto import tqdm
from glob import glob
import audiomentations as AU
import pedalboard as PB
import warnings
warnings.filterwarnings("ignore")
def load_chunk(path, length, chunk_size, offset=None):
if chunk_size <= length:
if offset is None:
offset = np.random.randint(length - chunk_size + 1)
x = sf.read(path, dtype='float32', start=offset, frames=chunk_size)[0]
else:
x = sf.read(path, dtype='float32')[0]
if len(x.shape) == 1:
# Mono case
pad = np.zeros((chunk_size - length))
else:
pad = np.zeros([chunk_size - length, x.shape[-1]])
x = np.concatenate([x, pad], axis=0)
# Mono fix
if len(x.shape) == 1:
x = np.expand_dims(x, axis=1)
return x.T
def get_track_set_length(params):
path, instruments, file_types = params
# Check lengths of all instruments (it can be different in some cases)
lengths_arr = []
for instr in instruments:
length = -1
for extension in file_types:
path_to_audio_file = path + '/{}.{}'.format(instr, extension)
if os.path.isfile(path_to_audio_file):
length = len(sf.read(path_to_audio_file)[0])
break
if length == -1:
print('Cant find file "{}" in folder {}'.format(instr, path))
continue
lengths_arr.append(length)
lengths_arr = np.array(lengths_arr)
if lengths_arr.min() != lengths_arr.max():
print('Warning: lengths of stems are different for path: {}. ({} != {})'.format(
path,
lengths_arr.min(),
lengths_arr.max())
)
# We use minimum to allow overflow for soundfile read in non-equal length cases
return path, lengths_arr.min()
# For multiprocessing
def get_track_length(params):
path = params
length = len(sf.read(path)[0])
return (path, length)
class MSSDataset(torch.utils.data.Dataset):
def __init__(self, config, data_path, metadata_path="metadata.pkl", dataset_type=1, batch_size=None, verbose=True):
self.verbose = verbose
self.config = config
self.dataset_type = dataset_type # 1, 2, 3 or 4
self.data_path = data_path
self.instruments = instruments = config.training.instruments
if batch_size is None:
batch_size = config.training.batch_size
self.batch_size = batch_size
self.file_types = ['wav', 'flac']
self.metadata_path = metadata_path
# Augmentation block
self.aug = False
if 'augmentations' in config:
if config['augmentations'].enable is True:
if self.verbose:
print('Use augmentation for training')
self.aug = True
else:
if self.verbose:
print('There is no augmentations block in config. Augmentations disabled for training...')
metadata = self.get_metadata()
if self.dataset_type in [1, 4]:
if len(metadata) > 0:
if self.verbose:
print('Found tracks in dataset: {}'.format(len(metadata)))
else:
print('No tracks found for training. Check paths you provided!')
exit()
else:
for instr in self.instruments:
if self.verbose:
print('Found tracks for {} in dataset: {}'.format(instr, len(metadata[instr])))
self.metadata = metadata
self.chunk_size = config.audio.chunk_size
self.min_mean_abs = config.audio.min_mean_abs
def __len__(self):
return self.config.training.num_steps * self.batch_size
def read_from_metadata_cache(self, track_paths, instr=None):
metadata = []
if os.path.isfile(self.metadata_path):
if self.verbose:
print('Found metadata cache file: {}'.format(self.metadata_path))
old_metadata = pickle.load(open(self.metadata_path, 'rb'))
else:
return track_paths, metadata
if instr:
old_metadata = old_metadata[instr]
# We will not re-read tracks existed in old metadata file
track_paths_set = set(track_paths)
for old_path, file_size in old_metadata:
if old_path in track_paths_set:
metadata.append([old_path, file_size])
track_paths_set.remove(old_path)
track_paths = list(track_paths_set)
if len(metadata) > 0:
print('Old metadata was used for {} tracks.'.format(len(metadata)))
return track_paths, metadata
def get_metadata(self):
read_metadata_procs = multiprocessing.cpu_count()
if 'read_metadata_procs' in self.config['training']:
read_metadata_procs = int(self.config['training']['read_metadata_procs'])
if self.verbose:
print(
'Dataset type:', self.dataset_type,
'Processes to use:', read_metadata_procs,
'\nCollecting metadata for', str(self.data_path),
)
if self.dataset_type in [1, 4]:
track_paths = []
if type(self.data_path) == list:
for tp in self.data_path:
tracks_for_folder = sorted(glob(tp + '/*'))
if len(tracks_for_folder) == 0:
print('Warning: no tracks found in folder \'{}\'. Please check it!'.format(tp))
track_paths += tracks_for_folder
else:
track_paths += sorted(glob(self.data_path + '/*'))
track_paths = [path for path in track_paths if os.path.basename(path)[0] != '.' and os.path.isdir(path)]
track_paths, metadata = self.read_from_metadata_cache(track_paths, None)
if read_metadata_procs <= 1:
for path in tqdm(track_paths):
track_path, track_length = get_track_set_length((path, self.instruments, self.file_types))
metadata.append((track_path, track_length))
else:
p = multiprocessing.Pool(processes=read_metadata_procs)
with tqdm(total=len(track_paths)) as pbar:
track_iter = p.imap(
get_track_set_length,
zip(track_paths, itertools.repeat(self.instruments), itertools.repeat(self.file_types))
)
for track_path, track_length in track_iter:
metadata.append((track_path, track_length))
pbar.update()
p.close()
elif self.dataset_type == 2:
metadata = dict()
for instr in self.instruments:
metadata[instr] = []
track_paths = []
if type(self.data_path) == list:
for tp in self.data_path:
track_paths += sorted(glob(tp + '/{}/*.wav'.format(instr)))
track_paths += sorted(glob(tp + '/{}/*.flac'.format(instr)))
else:
track_paths += sorted(glob(self.data_path + '/{}/*.wav'.format(instr)))
track_paths += sorted(glob(self.data_path + '/{}/*.flac'.format(instr)))
track_paths, metadata[instr] = self.read_from_metadata_cache(track_paths, instr)
if read_metadata_procs <= 1:
for path in tqdm(track_paths):
length = len(sf.read(path)[0])
metadata[instr].append((path, length))
else:
p = multiprocessing.Pool(processes=read_metadata_procs)
for out in tqdm(p.imap(get_track_length, track_paths), total=len(track_paths)):
metadata[instr].append(out)
elif self.dataset_type == 3:
import pandas as pd
if type(self.data_path) != list:
data_path = [self.data_path]
metadata = dict()
for i in range(len(self.data_path)):
if self.verbose:
print('Reading tracks from: {}'.format(self.data_path[i]))
df = pd.read_csv(self.data_path[i])
skipped = 0
for instr in self.instruments:
part = df[df['instrum'] == instr].copy()
print('Tracks found for {}: {}'.format(instr, len(part)))
for instr in self.instruments:
part = df[df['instrum'] == instr].copy()
metadata[instr] = []
track_paths = list(part['path'].values)
track_paths, metadata[instr] = self.read_from_metadata_cache(track_paths, instr)
for path in tqdm(track_paths):
if not os.path.isfile(path):
print('Cant find track: {}'.format(path))
skipped += 1
continue
# print(path)
try:
length = len(sf.read(path)[0])
except:
print('Problem with path: {}'.format(path))
skipped += 1
continue
metadata[instr].append((path, length))
if skipped > 0:
print('Missing tracks: {} from {}'.format(skipped, len(df)))
else:
print('Unknown dataset type: {}. Must be 1, 2, 3 or 4'.format(self.dataset_type))
exit()
# Save metadata
pickle.dump(metadata, open(self.metadata_path, 'wb'))
return metadata
def load_source(self, metadata, instr):
while True:
if self.dataset_type in [1, 4]:
track_path, track_length = random.choice(metadata)
for extension in self.file_types:
path_to_audio_file = track_path + '/{}.{}'.format(instr, extension)
if os.path.isfile(path_to_audio_file):
try:
source = load_chunk(path_to_audio_file, track_length, self.chunk_size)
except Exception as e:
# Sometimes error during FLAC reading, catch it and use zero stem
print('Error: {} Path: {}'.format(e, path_to_audio_file))
source = np.zeros((2, self.chunk_size), dtype=np.float32)
break
else:
track_path, track_length = random.choice(metadata[instr])
try:
source = load_chunk(track_path, track_length, self.chunk_size)
except Exception as e:
# Sometimes error during FLAC reading, catch it and use zero stem
print('Error: {} Path: {}'.format(e, track_path))
source = np.zeros((2, self.chunk_size), dtype=np.float32)
if np.abs(source).mean() >= self.min_mean_abs: # remove quiet chunks
break
if self.aug:
source = self.augm_data(source, instr)
return torch.tensor(source, dtype=torch.float32)
def load_random_mix(self):
res = []
for instr in self.instruments:
s1 = self.load_source(self.metadata, instr)
# Mixup augmentation. Multiple mix of same type of stems
if self.aug:
if 'mixup' in self.config['augmentations']:
if self.config['augmentations'].mixup:
mixup = [s1]
for prob in self.config.augmentations.mixup_probs:
if random.uniform(0, 1) < prob:
s2 = self.load_source(self.metadata, instr)
mixup.append(s2)
mixup = torch.stack(mixup, dim=0)
loud_values = np.random.uniform(
low=self.config.augmentations.loudness_min,
high=self.config.augmentations.loudness_max,
size=(len(mixup),)
)
loud_values = torch.tensor(loud_values, dtype=torch.float32)
mixup *= loud_values[:, None, None]
s1 = mixup.mean(dim=0, dtype=torch.float32)
res.append(s1)
res = torch.stack(res)
return res
def load_aligned_data(self):
track_path, track_length = random.choice(self.metadata)
if track_length >= self.chunk_size:
common_offset = np.random.randint(track_length - self.chunk_size + 1)
else:
common_offset = None
res = []
for i in self.instruments:
attempts = 10
while attempts:
for extension in self.file_types:
path_to_audio_file = track_path + '/{}.{}'.format(i, extension)
if os.path.isfile(path_to_audio_file):
try:
source = load_chunk(path_to_audio_file, track_length, self.chunk_size, offset=common_offset)
except Exception as e:
# Sometimes error during FLAC reading, catch it and use zero stem
print('Error: {} Path: {}'.format(e, path_to_audio_file))
source = np.zeros((2, self.chunk_size), dtype=np.float32)
break
if np.abs(source).mean() >= self.min_mean_abs: # remove quiet chunks
break
attempts -= 1
if attempts <= 0:
print('Attempts max!', track_path)
res.append(source)
res = np.stack(res, axis=0)
if self.aug:
for i, instr in enumerate(self.instruments):
res[i] = self.augm_data(res[i], instr)
return torch.tensor(res, dtype=torch.float32)
def augm_data(self, source, instr):
# source.shape = (2, 261120) - first channels, second length
source_shape = source.shape
applied_augs = []
if 'all' in self.config['augmentations']:
augs = self.config['augmentations']['all']
else:
augs = dict()
# We need to add to all augmentations specific augs for stem. And rewrite values if needed
if instr in self.config['augmentations']:
for el in self.config['augmentations'][instr]:
augs[el] = self.config['augmentations'][instr][el]
# Channel shuffle
if 'channel_shuffle' in augs:
if augs['channel_shuffle'] > 0:
if random.uniform(0, 1) < augs['channel_shuffle']:
source = source[::-1].copy()
applied_augs.append('channel_shuffle')
# Random inverse
if 'random_inverse' in augs:
if augs['random_inverse'] > 0:
if random.uniform(0, 1) < augs['random_inverse']:
source = source[:, ::-1].copy()
applied_augs.append('random_inverse')
# Random polarity (multiply -1)
if 'random_polarity' in augs:
if augs['random_polarity'] > 0:
if random.uniform(0, 1) < augs['random_polarity']:
source = -source.copy()
applied_augs.append('random_polarity')
# Random pitch shift
if 'pitch_shift' in augs:
if augs['pitch_shift'] > 0:
if random.uniform(0, 1) < augs['pitch_shift']:
apply_aug = AU.PitchShift(
min_semitones=augs['pitch_shift_min_semitones'],
max_semitones=augs['pitch_shift_max_semitones'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('pitch_shift')
# Random seven band parametric eq
if 'seven_band_parametric_eq' in augs:
if augs['seven_band_parametric_eq'] > 0:
if random.uniform(0, 1) < augs['seven_band_parametric_eq']:
apply_aug = AU.SevenBandParametricEQ(
min_gain_db=augs['seven_band_parametric_eq_min_gain_db'],
max_gain_db=augs['seven_band_parametric_eq_max_gain_db'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('seven_band_parametric_eq')
# Random tanh distortion
if 'tanh_distortion' in augs:
if augs['tanh_distortion'] > 0:
if random.uniform(0, 1) < augs['tanh_distortion']:
apply_aug = AU.TanhDistortion(
min_distortion=augs['tanh_distortion_min'],
max_distortion=augs['tanh_distortion_max'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('tanh_distortion')
# Random MP3 Compression
if 'mp3_compression' in augs:
if augs['mp3_compression'] > 0:
if random.uniform(0, 1) < augs['mp3_compression']:
apply_aug = AU.Mp3Compression(
min_bitrate=augs['mp3_compression_min_bitrate'],
max_bitrate=augs['mp3_compression_max_bitrate'],
backend=augs['mp3_compression_backend'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('mp3_compression')
# Random AddGaussianNoise
if 'gaussian_noise' in augs:
if augs['gaussian_noise'] > 0:
if random.uniform(0, 1) < augs['gaussian_noise']:
apply_aug = AU.AddGaussianNoise(
min_amplitude=augs['gaussian_noise_min_amplitude'],
max_amplitude=augs['gaussian_noise_max_amplitude'],
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('gaussian_noise')
# Random TimeStretch
if 'time_stretch' in augs:
if augs['time_stretch'] > 0:
if random.uniform(0, 1) < augs['time_stretch']:
apply_aug = AU.TimeStretch(
min_rate=augs['time_stretch_min_rate'],
max_rate=augs['time_stretch_max_rate'],
leave_length_unchanged=True,
p=1.0
)
source = apply_aug(samples=source, sample_rate=44100)
applied_augs.append('time_stretch')
# Possible fix of shape
if source_shape != source.shape:
source = source[..., :source_shape[-1]]
# Random Reverb
if 'pedalboard_reverb' in augs:
if augs['pedalboard_reverb'] > 0:
if random.uniform(0, 1) < augs['pedalboard_reverb']:
room_size = random.uniform(
augs['pedalboard_reverb_room_size_min'],
augs['pedalboard_reverb_room_size_max'],
)
damping = random.uniform(
augs['pedalboard_reverb_damping_min'],
augs['pedalboard_reverb_damping_max'],
)
wet_level = random.uniform(
augs['pedalboard_reverb_wet_level_min'],
augs['pedalboard_reverb_wet_level_max'],
)
dry_level = random.uniform(
augs['pedalboard_reverb_dry_level_min'],
augs['pedalboard_reverb_dry_level_max'],
)
width = random.uniform(
augs['pedalboard_reverb_width_min'],
augs['pedalboard_reverb_width_max'],
)
board = PB.Pedalboard([PB.Reverb(
room_size=room_size, # 0.1 - 0.9
damping=damping, # 0.1 - 0.9
wet_level=wet_level, # 0.1 - 0.9
dry_level=dry_level, # 0.1 - 0.9
width=width, # 0.9 - 1.0
freeze_mode=0.0,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_reverb')
# Random Chorus
if 'pedalboard_chorus' in augs:
if augs['pedalboard_chorus'] > 0:
if random.uniform(0, 1) < augs['pedalboard_chorus']:
rate_hz = random.uniform(
augs['pedalboard_chorus_rate_hz_min'],
augs['pedalboard_chorus_rate_hz_max'],
)
depth = random.uniform(
augs['pedalboard_chorus_depth_min'],
augs['pedalboard_chorus_depth_max'],
)
centre_delay_ms = random.uniform(
augs['pedalboard_chorus_centre_delay_ms_min'],
augs['pedalboard_chorus_centre_delay_ms_max'],
)
feedback = random.uniform(
augs['pedalboard_chorus_feedback_min'],
augs['pedalboard_chorus_feedback_max'],
)
mix = random.uniform(
augs['pedalboard_chorus_mix_min'],
augs['pedalboard_chorus_mix_max'],
)
board = PB.Pedalboard([PB.Chorus(
rate_hz=rate_hz,
depth=depth,
centre_delay_ms=centre_delay_ms,
feedback=feedback,
mix=mix,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_chorus')
# Random Phazer
if 'pedalboard_phazer' in augs:
if augs['pedalboard_phazer'] > 0:
if random.uniform(0, 1) < augs['pedalboard_phazer']:
rate_hz = random.uniform(
augs['pedalboard_phazer_rate_hz_min'],
augs['pedalboard_phazer_rate_hz_max'],
)
depth = random.uniform(
augs['pedalboard_phazer_depth_min'],
augs['pedalboard_phazer_depth_max'],
)
centre_frequency_hz = random.uniform(
augs['pedalboard_phazer_centre_frequency_hz_min'],
augs['pedalboard_phazer_centre_frequency_hz_max'],
)
feedback = random.uniform(
augs['pedalboard_phazer_feedback_min'],
augs['pedalboard_phazer_feedback_max'],
)
mix = random.uniform(
augs['pedalboard_phazer_mix_min'],
augs['pedalboard_phazer_mix_max'],
)
board = PB.Pedalboard([PB.Phaser(
rate_hz=rate_hz,
depth=depth,
centre_frequency_hz=centre_frequency_hz,
feedback=feedback,
mix=mix,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_phazer')
# Random Distortion
if 'pedalboard_distortion' in augs:
if augs['pedalboard_distortion'] > 0:
if random.uniform(0, 1) < augs['pedalboard_distortion']:
drive_db = random.uniform(
augs['pedalboard_distortion_drive_db_min'],
augs['pedalboard_distortion_drive_db_max'],
)
board = PB.Pedalboard([PB.Distortion(
drive_db=drive_db,
)])
source = board(source, 44100)
applied_augs.append('pedalboard_distortion')
# Random PitchShift
if 'pedalboard_pitch_shift' in augs:
if augs['pedalboard_pitch_shift'] > 0:
if random.uniform(0, 1) < augs['pedalboard_pitch_shift']:
semitones = random.uniform(
augs['pedalboard_pitch_shift_semitones_min'],
augs['pedalboard_pitch_shift_semitones_max'],
)
board = PB.Pedalboard([PB.PitchShift(
semitones=semitones
)])
source = board(source, 44100)
applied_augs.append('pedalboard_pitch_shift')
# Random Resample
if 'pedalboard_resample' in augs:
if augs['pedalboard_resample'] > 0:
if random.uniform(0, 1) < augs['pedalboard_resample']:
target_sample_rate = random.uniform(
augs['pedalboard_resample_target_sample_rate_min'],
augs['pedalboard_resample_target_sample_rate_max'],
)
board = PB.Pedalboard([PB.Resample(
target_sample_rate=target_sample_rate
)])
source = board(source, 44100)
applied_augs.append('pedalboard_resample')
# Random Bitcrash
if 'pedalboard_bitcrash' in augs:
if augs['pedalboard_bitcrash'] > 0:
if random.uniform(0, 1) < augs['pedalboard_bitcrash']:
bit_depth = random.uniform(
augs['pedalboard_bitcrash_bit_depth_min'],
augs['pedalboard_bitcrash_bit_depth_max'],
)
board = PB.Pedalboard([PB.Bitcrush(
bit_depth=bit_depth
)])
source = board(source, 44100)
applied_augs.append('pedalboard_bitcrash')
# Random MP3Compressor
if 'pedalboard_mp3_compressor' in augs:
if augs['pedalboard_mp3_compressor'] > 0:
if random.uniform(0, 1) < augs['pedalboard_mp3_compressor']:
vbr_quality = random.uniform(
augs['pedalboard_mp3_compressor_pedalboard_mp3_compressor_min'],
augs['pedalboard_mp3_compressor_pedalboard_mp3_compressor_max'],
)
board = PB.Pedalboard([PB.MP3Compressor(
vbr_quality=vbr_quality
)])
source = board(source, 44100)
applied_augs.append('pedalboard_mp3_compressor')
# print(applied_augs)
return source
def __getitem__(self, index):
if self.dataset_type in [1, 2, 3]:
res = self.load_random_mix()
else:
res = self.load_aligned_data()
# Randomly change loudness of each stem
if self.aug:
if 'loudness' in self.config['augmentations']:
if self.config['augmentations']['loudness']:
loud_values = np.random.uniform(
low=self.config['augmentations']['loudness_min'],
high=self.config['augmentations']['loudness_max'],
size=(len(res),)
)
loud_values = torch.tensor(loud_values, dtype=torch.float32)
res *= loud_values[:, None, None]
mix = res.sum(0)
if self.aug:
if 'mp3_compression_on_mixture' in self.config['augmentations']:
apply_aug = AU.Mp3Compression(
min_bitrate=self.config['augmentations']['mp3_compression_on_mixture_bitrate_min'],
max_bitrate=self.config['augmentations']['mp3_compression_on_mixture_bitrate_max'],
backend=self.config['augmentations']['mp3_compression_on_mixture_backend'],
p=self.config['augmentations']['mp3_compression_on_mixture']
)
mix_conv = mix.cpu().numpy().astype(np.float32)
required_shape = mix_conv.shape
mix = apply_aug(samples=mix_conv, sample_rate=44100)
# Sometimes it gives longer audio (so we cut)
if mix.shape != required_shape:
mix = mix[..., :required_shape[-1]]
mix = torch.tensor(mix, dtype=torch.float32)
# If we need only given stem (for roformers)
if self.config.training.target_instrument is not None:
index = self.config.training.instruments.index(self.config.training.target_instrument)
return res[index], mix
return res, mix