-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathhypersim.py
71 lines (69 loc) · 2.93 KB
/
hypersim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# dataset settings
# data will resized/cropped to the canonical size, refer to ._data_base_.py
Hypersim_dataset=dict(
lib = 'HypersimDataset',
data_name = 'Hypersim',
metric_scale = 1.0,
data_type='denselidar_syn',
data = dict(
# configs for the training pipeline
train=dict(
sample_ratio = 1.0,
sample_size = -1,
pipeline=[dict(type='BGR2RGB'),
dict(type='ResizeCanonical', ratio_range=(0.9, 1.3)),
dict(type='RandomCrop',
crop_size=(0,0), # crop_size will be overwriteen by data_basic configs
crop_type='rand',
ignore_label=-1,
padding=[0, 0, 0]),
dict(type='RandomEdgeMask',
mask_maxsize=50,
prob=0.0,
rgb_invalid=[0,0,0],
label_invalid=-1,),
dict(type='RandomHorizontalFlip',
prob=0.4),
dict(type='PhotoMetricDistortion',
to_gray_prob=0.1,
distortion_prob=0.05,),
dict(type='RandomBlur',
prob=0.05),
dict(type='RGBCompresion', prob=0.1, compression=(0, 50)),
dict(type='ToTensor'),
dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]),
],),
# configs for the training pipeline
val=dict(
pipeline=[dict(type='BGR2RGB'),
dict(type='ResizeCanonical', ratio_range=(1.0, 1.0)),
dict(type='RandomCrop',
crop_size=(0,0), # crop_size will be overwriteen by data_basic configs
crop_type='center',
ignore_label=-1,
padding=[0, 0, 0]),
dict(type='ToTensor'),
dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]),
],
sample_ratio = 1.0,
sample_size = 200,),
# configs for the training pipeline
test=dict(
pipeline=[dict(type='BGR2RGB'),
dict(type='ResizeCanonical', ratio_range=(1.0, 1.0)),
dict(type='ResizeKeepRatio',
resize_size=(512, 960),
ignore_label=-1,
padding=[0, 0, 0]),
# dict(type='RandomCrop',
# crop_size=(0,0), # crop_size will be overwriteen by data_basic configs
# crop_type='center',
# ignore_label=-1,
# padding=[0, 0, 0]),
dict(type='ToTensor'),
dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]),
],
sample_ratio = 1.0,
sample_size = 2000,),
),
)