forked from JarvisUSTC/DiffPure-VLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpurification.py
128 lines (110 loc) · 4.71 KB
/
purification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import torch
import torch.nn.functional as F
from utils import diff2clf, clf2diff, normalize
import matplotlib.pyplot as plt
def get_beta_schedule(beta_start, beta_end, num_diffusion_timesteps):
betas = np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
assert betas.shape == (num_diffusion_timesteps,)
return torch.from_numpy(betas).float()
class PurificationForward(torch.nn.Module):
def __init__(self, diffusion, max_timestep, attack_steps, sampling_method, is_imagenet, device, debug=False, explore=False):
super().__init__()
self.diffusion = diffusion
self.betas = get_beta_schedule(1e-4, 2e-2, 1000).to(device)
self.max_timestep = max_timestep
self.attack_steps = attack_steps
self.sampling_method = sampling_method
assert sampling_method in ['ddim', 'ddpm']
if self.sampling_method == 'ddim':
self.eta = 0
elif self.sampling_method == 'ddpm':
self.eta = 1
self.is_imagenet = is_imagenet
self.debug = debug
self.explore = explore
def compute_alpha(self, t):
beta = torch.cat(
[torch.zeros(1).to(self.betas.device), self.betas], dim=0)
a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1, 1)
return a
def get_noised_x(self, x, t):
e = torch.randn_like(x)
if type(t) == int:
t = (torch.ones(x.shape[0]) * t).to(x.device).long()
a = (1 - self.betas).cumprod(dim=0).index_select(0, t).view(-1, 1, 1, 1)
x = x * a.sqrt() + e * (1.0 - a).sqrt()
return x
def denoising_process(self, x, seq):
n = x.size(0)
seq_next = [-1] + list(seq[:-1])
xt = x
for i, j in zip(reversed(seq), reversed(seq_next)):
t = (torch.ones(n) * i).to(x.device)
next_t = (torch.ones(n) * j).to(x.device)
at = self.compute_alpha(t.long())
at_next = self.compute_alpha(next_t.long())
et = self.diffusion(xt, t)
if self.is_imagenet:
et, _ = torch.split(et, 3, dim=1)
x0_t = (xt - et * (1 - at).sqrt()) / at.sqrt()
c1 = (
self.eta * ((1 - at / at_next) *
(1 - at_next) / (1 - at)).sqrt()
)
c2 = ((1 - at_next) - c1 ** 2).sqrt()
xt = at_next.sqrt() * x0_t + c1 * torch.randn_like(x) + c2 * et
return xt
def preprocess(self, x):
# diffusion part
if self.is_imagenet:
x = F.interpolate(x, size=(256, 256),
mode='bilinear', align_corners=False)
x_diff = clf2diff(x)
for i in range(len(self.max_timestep)):
noised_x = self.get_noised_x(x_diff, self.max_timestep[i])
x_diff = self.denoising_process(noised_x, self.attack_steps[i])
x_clf = diff2clf(x_diff)
return x_clf
def classify(self, x):
logits = self.clf(x)
return logits
def forward(self, x):
# diffusion part
if self.is_imagenet:
x = F.interpolate(x, size=(256, 256),
mode='bilinear', align_corners=False)
x_diff = clf2diff(x)
for i in range(len(self.max_timestep)):
noised_x = self.get_noised_x(x_diff, self.max_timestep[i])
x_diff = self.denoising_process(noised_x, self.attack_steps[i])
if self.explore:
noised_x_explore = diff2clf(F.interpolate(noised_x, size=(
224, 224), mode='bilinear', align_corners=False)).clamp(0,1)
x_diff_explore = diff2clf(F.interpolate(x_diff, size=(
224, 224), mode='bilinear', align_corners=False)).clamp(0,1)
return noised_x_explore, x_diff_explore
# classifier part
if self.is_imagenet:
x_clf = normalize(diff2clf(F.interpolate(x_diff, size=(
224, 224), mode='bilinear', align_corners=False)))
else:
x_clf = diff2clf(x_diff)
# 可视化diffusion后的图像
if self.debug:
self.visualization(x_clf.detach())
# 作为预处理器返回图片
return x_clf
def visualization(self, x_clf):
# 可视化diffusion后的图像
mean = torch.tensor([0.485, 0.456, 0.406], device="cuda")
std = torch.tensor([0.229, 0.224, 0.225], device="cuda")
vis = x_clf * std[:, None, None] + mean[:, None, None]
vis = vis.permute(0, 2, 3, 1)
vis = torch.clamp(vis, 0, 1)
for i in range(vis.size(0)):
plt.imshow(vis[i].cpu().numpy())
plt.axis("off")
plt.savefig(f"diffusion_{i}.png")