-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·232 lines (192 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# UFORecon
import argparse
from re import I
from stat import UF_OPAQUE
from tqdm import tqdm
import math
import os
import os.path as path
import torch
from pytorch_lightning import loggers as pl_loggers
import sys
sys.path.append(path.dirname( path.dirname( path.abspath(__file__) ) ))
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.utilities.model_summary import ModelSummary
from pytorch_lightning.callbacks import ModelCheckpoint
from code1.model import UFORecon
from code1.dataset.dtu_train import MVSDataset
from code1.dataset.dtu_test_sparse import DtuFitSparse
from code1.dataset.general_fit import GeneralFit
import options
PI = math.pi
device = "cuda" if torch.cuda.is_available() else "cpu"
# -------------------------------- main function
if __name__ == "__main__":
seed_everything(0, workers=True)
# -------------------------------- args for training and models ---------------------
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', dest='root_dir', type=str,
help='directory of training dataset')
#* training
parser.add_argument('--batch_size', dest='batch_size', type=int, default=2, help='batch size')
parser.add_argument('--max_epochs', dest='max_epochs', type=int, default=16, help='max num of epochs')
parser.add_argument('--val_only', dest='val_only', action="store_true", help='only validate')
parser.add_argument('--uforecon_lr', dest='uforecon_lr', type=float, default=1.e-4, help='learning rate for uforecon')
#* checkpoints
parser.add_argument('--load_ckpt', dest='load_ckpt', type=str, default=False, help='load pretrained lightning ckpt')
#* ray sampling
parser.add_argument('--train_ray_num', dest='train_ray_num', type=int, default=1024, help='ray number in one image')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=48, help='patch size for training')
parser.add_argument('--sW', type=int, default=1) #* change ray sampling stride
parser.add_argument('--sH', type=int, default=1) #* change ray sampling stride
parser.add_argument('--coarse_sample', dest='coarse_sample', type=int, default=64, help='number of coarse samples during training')
parser.add_argument('--fine_sample', dest='fine_sample', type=int, default=64, help='number of fine samples during training')
#* loss weights
parser.add_argument('--weight_rgb', dest='weight_rgb', type=float, default=1.0)
parser.add_argument('--weight_depth', dest='weight_depth', type=float, default=1.0)
parser.add_argument('--logdir', default='./checkpoints/random_sample', help='the directory to save checkpoints/logs')
# -------------------------------- args for testing --------------------------------
parser.add_argument('--test_dir', dest='test_dir', type=str, help='directory of test dataset')
parser.add_argument('--out_dir', dest='out_dir', type=str, help='directory of to save test result')
parser.add_argument('--depth_dir', dest='depth_dir', type=str, help='directory of depth maps')
parser.add_argument('--extract_geometry', dest='extract_geometry', action='store_true', help='if you only want to extract geometry')
#* testing args
parser.add_argument('--test_general', dest='test_general', action='store_true', help='test on custom dataset')
parser.add_argument('--test_ray_num', dest='test_ray_num', type=int, default=1200)
parser.add_argument('--test_sample_coarse', dest='test_sample_coarse', type=int, default=64)
parser.add_argument('--test_sample_fine', dest='test_sample_fine', type=int, default=64)
parser.add_argument('--test_coarse_only', dest='test_coarse_only', action="store_true", help='only use coarse samples during testing')
parser.add_argument('--test_n_view', dest='test_n_view', type=int, default=3)
parser.add_argument('--train_n_view', dest='train_n_view', type=int, default=5)
parser.add_argument("--test_ref_view", type=int, nargs="+", default=[23, 24, 33, 22, 15, 34, 14, 32, 16, 35, 25])
#* correlation modeling args
parser.add_argument('--ndepths', type=str, default="48,32,8", help='ndepths')
parser.add_argument('--depth_inter_r', type=str, default="4,2,1", help='depth_intervals_ratio')
parser.add_argument('--grad_method', type=str, default="detach", choices=["detach", "undetach"], help='grad method')
parser.add_argument('--share_cr', action='store_true', help='whether share the cost volume regularization')
parser.add_argument('--cr_base_chs', type=str, default="8,8,8", help='cost regularization base channels')
parser.add_argument('--numdepth', type=int, default=192, help='the number of depth values')
#* ablation args
parser.add_argument("--view_selection_type", type=str, default="random", choices=["random", "best"])
parser.add_argument("--mvs_depth_guide", type=int, default=0, help='use mvs depth map as guidance')
parser.add_argument("--volume_type", type=str, default="correlation", choices=["featuregrid", "correlation"])
parser.add_argument('--volume_reso', dest='volume_reso', type=int, default=96, help="3D feature volume resolution") # set as 0 to disable
parser.add_argument("--use_dir_srdf", action="store_true", help='use direction srdf')
parser.add_argument("--depth_pos_encoding", action="store_true", help='use depth pos encoding')
parser.add_argument("--explicit_similarity", action="store_true", help='use explicit similarity')
parser.add_argument("--only_reference_frustum", action="store_true", help='use only the reference frustum view')
parser.add_argument('--set', dest='set', type=int, default=0, help='two sets are provided by SparseNeuS')
parser.add_argument('--debug', dest='debug', type=bool, default=False, help='debug mode')
parser.add_argument('--test_scan', dest='test_scan', type=str, nargs="+", default=['5aa235f64a17b335eeaf9609', '5ba19a8a360c7c30c1c169df', '5adc6bd52430a05ecb2ffb85', '5bf7d63575c26f32dbf7413b'],)
parser.add_argument('--dataset', dest='dataset', type=str, default='blendedmvs', help='dataset name')
parser.add_argument('--use_mask', dest='use_mask', action='store_true', help='use mask')
args = parser.parse_args()
batch_size = args.batch_size
num_workers = 1 if args.debug else 12
devices = [0]
#* load dataset
if not args.extract_geometry:
# training
dtu_dataset_train = MVSDataset(
root_dir=args.root_dir,
split="train",
split_filepath="code1/dataset/dtu/lists/train.txt",
pair_filepath="code1/dataset/dtu/dtu_pairs.txt",
n_views=args.train_n_view,
view_selection_type=args.view_selection_type,
)
dtu_dataset_val = MVSDataset(
root_dir=args.root_dir,
split="test",
split_filepath="code1/dataset/dtu/lists/test.txt",
pair_filepath="code1/dataset/dtu/dtu_pairs.txt",
n_views=args.test_n_view,
test_ref_views = args.test_ref_view, # only use view 23,
view_selection_type=args.view_selection_type,
)
print("dtu_dataset_train:", len(dtu_dataset_train))
print("dtu_dataset_val:", len(dtu_dataset_val))
dataloader_train = DataLoader(dtu_dataset_train,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True)
dataloader_val = DataLoader(dtu_dataset_val,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False)
#! extract geometry
else:
dataloader_test = []
# dtu, 15 test scenes
if not args.test_general:
for scan in [24, 37, 40, 55, 63, 65, 69, 83, 97, 105, 106, 110, 114, 118, 122]:
# for scan in [65]:
dataset_tmp = DtuFitSparse(root_dir=args.test_dir,
split="test",
scan_id='scan%d'%scan,
n_views=args.test_n_view,
set=args.set,
test_view_pair=args.test_ref_view,
depth_dir=args.depth_dir)
dataloader_tmp = DataLoader(dataset_tmp,
batch_size=1,
num_workers=1,
shuffle=False)
dataloader_test.append(dataloader_tmp)
else:
# for scan in ['5aa235f64a17b335eeaf9609', '5ba19a8a360c7c30c1c169df', '5adc6bd52430a05ecb2ffb85', '5bf7d63575c26f32dbf7413b']: #* sculpture
for scan in args.test_scan:
# for scan in os.listdir(args.test_dir): #* ['general'] before
dataset_tmp = GeneralFit(root_dir=args.test_dir,
scan_id=scan,
n_views=args.test_n_view,
test_ref_view=args.test_ref_view, dataset=args.dataset, use_mask=args.use_mask)
dataloader_tmp = DataLoader(dataset_tmp,
batch_size=1,
num_workers=1,
shuffle=False)
dataloader_test.append(dataloader_tmp)
# -------------------------------- lightning module -------------------------------
print("---------------------------------------------------------------------------------------------")
print("VIEW_SELECTION_TYPE:", args.view_selection_type, "MVS_DEPTH: ", args.mvs_depth_guide)
print("---------------------------------------------------------------------------------------------")
if args.load_ckpt:
uforecon = UFORecon.load_from_checkpoint(checkpoint_path=args.load_ckpt, strict=True, args=args)
print("Model loaded:", args.load_ckpt)
else:
uforecon = UFORecon(args)
tb_logger = pl_loggers.TensorBoardLogger("./%s" % args.logdir)
checkpoint_callback = ModelCheckpoint(
monitor='val/loss_depth_fine',
dirpath=os.path.join(args.logdir, 'checkpoints'),
filename='{epoch:02d}',
save_top_k=15,
mode='min',
)
# -------------------------------- trainer ---------------------------------------
trainer = pl.Trainer(
accelerator="gpu" if device=="cuda" else "cpu",
devices=devices,
strategy = None,
max_epochs=args.max_epochs,
check_val_every_n_epoch=1,
logger=tb_logger,
num_sanity_val_steps=0,
callbacks=[checkpoint_callback],
)
print(ModelSummary(uforecon, max_depth=1))
# -------------------------------- train or/and testing --------------------------------
if not args.extract_geometry:
if args.val_only:
print("[only validation]")
trainer.validate(uforecon, dataloader_train)
else:
print("[start training]")
trainer.fit(uforecon, dataloader_train, dataloader_val)
else:
for dataloader_test1 in tqdm(dataloader_test):
trainer.validate(uforecon, dataloader_test1) # model, dataloader 넣고 끝
print("end")