-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquant.py
294 lines (245 loc) · 12.8 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, get_state_dict, ModelEma
from tools.datasets import build_dataset
from tools.engine import evaluate, time_measure
import tools.utils as utils
from tools.samplers import RASampler
from contextlib import suppress
from tools import models_mamba
import torch.nn as nn
def add_new_module(name, original_module, added_module):
levels = name.split('.')
if len(levels) > 1:
mod_ = original_module
for l_idx in range(len(levels)-1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], added_module)
else:
setattr(original_module, name, added_module)
def get_args_parser():
parser = argparse.ArgumentParser('PTQ4VM and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=100, type=int)
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
help='Color jitter factor (default: 0.3)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# # * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--time_compare', action='store_true', help='comparing time Kernel vs FP')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# amp about
parser.add_argument('--if_amp', action='store_true')
parser.add_argument('--no_amp', action='store_false', dest='if_amp')
parser.set_defaults(if_amp=False)
parser.add_argument('--local-rank', default=0, type=int)
# quantization parameters
parser.add_argument("--act_scales", default='', help='path for act_scale checkpoint')
parser.add_argument("--alpha", type=float, default=0.5)
parser.add_argument("--n-lvw", type=int, default=256)
parser.add_argument("--n-lva", type=int, default=256)
parser.add_argument("--qmode", type=str, default='ptq4vm', choices=['ptq4vm'])
parser.add_argument('--train-batch', default=256, type=int)
parser.add_argument('--lr-a', type=float, default=5e-4, metavar='LR',
help='activation stepsize lr (default: 5e-4)')
parser.add_argument('--lr-w', type=float, default=5e-4, metavar='LR',
help='weight stepsize lr (default: 5e-4)')
parser.add_argument('--lr-s', type=float, default=1e-2, metavar='LR',
help='learning rate (default: 1e-2)')
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
img_size=args.input_size
)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# amp about
amp_autocast = suppress
if args.time_compare:
checkpoint = torch.load(args.resume, map_location='cpu')
msg = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print(msg)
# time measure for FP
time_measure(data_loader_val, model, amp_autocast, 100)
# time measure for Kernel
from ptq4vm.quantizer import QuantOps as Q
if Q is not None:
for name, module in model_without_ddp.named_modules():
if isinstance(module, nn.Linear):
if 'out_proj' in name or 'in_proj' in name or 'x_proj' in name or 'dt_proj' in name:
quantlinear = Q.Linear(module.in_features, module.out_features,
act_func=Q.Act(), bias=False if module.bias is None else True,
device=module.weight.device)
quantlinear.weight.data = module.weight
if module.bias is not None:
quantlinear.bias.data = module.bias
add_new_module(name, model_without_ddp, quantlinear)
del quantlinear
for name, module in model_without_ddp.named_modules():
module.name = name
act_scales = torch.load(args.act_scales)
from ptq4vm.jlss import JLSS
JLSS(model_without_ddp, args, data_loader_train, device, act_scales)
for name, module in model_without_ddp.named_modules():
if isinstance(module, Q.Linear):
module.set_real_int8()
module.act_func.set_real_int8()
time_measure(data_loader_val, model_without_ddp, amp_autocast, 100)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
msg = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print(msg)
if args.qmode == "ptq4vm":
from ptq4vm.quantizer import QuantOps as Q
else:
Q = None
if Q is not None:
for name, module in model_without_ddp.named_modules():
if isinstance(module, nn.Linear):
if 'out_proj' in name or 'in_proj' in name or 'x_proj' in name or 'dt_proj' in name:
quantlinear = Q.Linear(module.in_features, module.out_features,
act_func=Q.Act(), bias=False if module.bias is None else True,
device=module.weight.device)
quantlinear.weight.data = module.weight
if module.bias is not None:
quantlinear.bias.data = module.bias
add_new_module(name, model_without_ddp, quantlinear)
del quantlinear
for name, module in model_without_ddp.named_modules():
module.name = name
if args.qmode == "ptq4vm":
act_scales = torch.load(args.act_scales)
from ptq4vm.jlss import JLSS
JLSS(model_without_ddp, args, data_loader_train, device, act_scales)
test_stats = evaluate(data_loader_val, model, device, amp_autocast)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)