-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
139 lines (113 loc) · 3.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from transformers import LlamaForCausalLM, LlamaTokenizer
import torch
import argparse
from transformers import TrainerCallback
from contextlib import nullcontext
from llama_recipes.utils.dataset_utils import get_preprocessed_dataset
from llama_recipes.configs.datasets import alpaca_dataset
from transformers import default_data_collator, Trainer, TrainingArguments
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model_id", type=str, default="/data/zy/models/llama-2-chat-7b-hf")
parser.add_argument("--lora_r", type=int, default=16)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--num_train_epochs", type=int, default=5)
parser.add_argument("--acc_step", type=int, default=1)
args = parser.parse_args()
#print GPT info
print(torch.cuda.is_available())
print( torch.cuda.device_count())
#load model
model_id=args.model_id
tokenizer = LlamaTokenizer.from_pretrained(model_id, padding='max_length')
model =LlamaForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map='auto', torch_dtype=torch.float16)
#load data
train_dataset = get_preprocessed_dataset(tokenizer, alpaca_dataset, 'train')
#preparing model for PEFT
model.train()
def create_peft_config(model,lora_r):
from peft import (
get_peft_model,
LoraConfig,
TaskType,
prepare_model_for_int8_training,
)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_r,
lora_alpha=32,
lora_dropout=0.05,
target_modules = ["q_proj", "v_proj"]
)
# prepare int-8 model for training
model = prepare_model_for_int8_training(model)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model, peft_config
# create peft config
model, lora_config = create_peft_config(model,args.lora_r)
#define an optical profile
enable_profiler = False
output_dir = "model_out_{}_{}_{}".format(args.lora_r, args.learning_rate, args.num_train_epochs)
config = {
'lora_config': lora_config,
'learning_rate': args.learning_rate,
'num_train_epochs': args.num_train_epochs,
'gradient_accumulation_steps': args.acc_step,
'per_device_train_batch_size': 1,
'gradient_checkpointing': False,
}
# Set up profiler
if enable_profiler:
wait, warmup, active, repeat = 1, 1, 2, 1
total_steps = (wait + warmup + active) * (1 + repeat)
schedule = torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=repeat)
profiler = torch.profiler.profile(
schedule=schedule,
on_trace_ready=torch.profiler.tensorboard_trace_handler(f"{output_dir}/logs/tensorboard"),
record_shapes=True,
profile_memory=True,
with_stack=True)
class ProfilerCallback(TrainerCallback):
def __init__(self, profiler):
self.profiler = profiler
def on_step_end(self, *args, **kwargs):
self.profiler.step()
profiler_callback = ProfilerCallback(profiler)
else:
profiler = nullcontext()
#train
# Define training args
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
bf16=True, # Use BF16 if available
# logging strategies
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=10,
save_strategy="no",
optim="adamw_torch_fused",
max_steps=total_steps if enable_profiler else -1,
**{k:v for k,v in config.items() if k != 'lora_config'}
)
with profiler:
# Create Trainer instance
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=default_data_collator,
callbacks=[profiler_callback] if enable_profiler else [],
)
# Start training
trainer.train()
#at last
model.save_pretrained(output_dir)
#
#
# #reference
# model.eval()
# # with torch.no_grad():
# # print(tokenizer.decode(model.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True))