-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval.py
40 lines (33 loc) · 1.56 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from torch import nn
from torch.utils.data import DataLoader
import numpy as np
from typing import Dict, Optional
from tqdm import tqdm
from utils import calculate_errors, sliding_window_predict
def evaluate(
model: nn.Module,
data_loader: DataLoader,
device: torch.device,
sliding_window: bool = False,
window_size: Optional[int] = None,
stride: Optional[int] = None,
) -> Dict[str, float]:
model.eval()
pred_counts, target_counts = [], []
if sliding_window:
assert window_size is not None, f"Window size must be provided when sliding_window is True, but got {window_size}"
assert stride is not None, f"Stride must be provided when sliding_window is True, but got {stride}"
for image, target_points, _ in tqdm(data_loader):
image = image.to(device)
target_counts.append([len(p) for p in target_points])
with torch.set_grad_enabled(False):
if sliding_window:
pred_density = sliding_window_predict(model, image, window_size, stride)
else:
pred_density = model(image)
pred_counts.append(pred_density.sum(dim=(1, 2, 3)).cpu().numpy().tolist())
pred_counts = np.array([item for sublist in pred_counts for item in sublist])
target_counts = np.array([item for sublist in target_counts for item in sublist])
assert len(pred_counts) == len(target_counts), f"Length of predictions and ground truths should be equal, but got {len(pred_counts)} and {len(target_counts)}"
return calculate_errors(pred_counts, target_counts)