-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathlosses.py
544 lines (421 loc) · 18.4 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
"""
Module containing all vae losses.
"""
import abc
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch import optim
from .discriminator import Discriminator
from disvae.utils.math import (log_density_gaussian, log_importance_weight_matrix,
matrix_log_density_gaussian)
LOSSES = ["VAE", "betaH", "betaB", "factor", "btcvae"]
RECON_DIST = ["bernoulli", "laplace", "gaussian"]
# TO-DO: clean n_data and device
def get_loss_f(loss_name, **kwargs_parse):
"""Return the correct loss function given the argparse arguments."""
kwargs_all = dict(rec_dist=kwargs_parse["rec_dist"],
steps_anneal=kwargs_parse["reg_anneal"])
if loss_name == "betaH":
return BetaHLoss(beta=kwargs_parse["betaH_B"], **kwargs_all)
elif loss_name == "VAE":
return BetaHLoss(beta=1, **kwargs_all)
elif loss_name == "betaB":
return BetaBLoss(C_init=kwargs_parse["betaB_initC"],
C_fin=kwargs_parse["betaB_finC"],
gamma=kwargs_parse["betaB_G"],
**kwargs_all)
elif loss_name == "factor":
return FactorKLoss(kwargs_parse["device"],
gamma=kwargs_parse["factor_G"],
disc_kwargs=dict(latent_dim=kwargs_parse["latent_dim"]),
optim_kwargs=dict(lr=kwargs_parse["lr_disc"], betas=(0.5, 0.9)),
**kwargs_all)
elif loss_name == "btcvae":
return BtcvaeLoss(kwargs_parse["n_data"],
alpha=kwargs_parse["btcvae_A"],
beta=kwargs_parse["btcvae_B"],
gamma=kwargs_parse["btcvae_G"],
**kwargs_all)
else:
assert loss_name not in LOSSES
raise ValueError("Uknown loss : {}".format(loss_name))
class BaseLoss(abc.ABC):
"""
Base class for losses.
Parameters
----------
record_loss_every: int, optional
Every how many steps to recorsd the loss.
rec_dist: {"bernoulli", "gaussian", "laplace"}, optional
Reconstruction distribution istribution of the likelihood on the each pixel.
Implicitely defines the reconstruction loss. Bernoulli corresponds to a
binary cross entropy (bse), Gaussian corresponds to MSE, Laplace
corresponds to L1.
steps_anneal: nool, optional
Number of annealing steps where gradually adding the regularisation.
"""
def __init__(self, record_loss_every=50, rec_dist="bernoulli", steps_anneal=0):
self.n_train_steps = 0
self.record_loss_every = record_loss_every
self.rec_dist = rec_dist
self.steps_anneal = steps_anneal
@abc.abstractmethod
def __call__(self, data, recon_data, latent_dist, is_train, storer, **kwargs):
"""
Calculates loss for a batch of data.
Parameters
----------
data : torch.Tensor
Input data (e.g. batch of images). Shape : (batch_size, n_chan,
height, width).
recon_data : torch.Tensor
Reconstructed data. Shape : (batch_size, n_chan, height, width).
latent_dist : tuple of torch.tensor
sufficient statistics of the latent dimension. E.g. for gaussian
(mean, log_var) each of shape : (batch_size, latent_dim).
is_train : bool
Whether currently in train mode.
storer : dict
Dictionary in which to store important variables for vizualisation.
kwargs:
Loss specific arguments
"""
def _pre_call(self, is_train, storer):
if is_train:
self.n_train_steps += 1
if not is_train or self.n_train_steps % self.record_loss_every == 1:
storer = storer
else:
storer = None
return storer
class BetaHLoss(BaseLoss):
"""
Compute the Beta-VAE loss as in [1]
Parameters
----------
beta : float, optional
Weight of the kl divergence.
kwargs:
Additional arguments for `BaseLoss`, e.g. rec_dist`.
References
----------
[1] Higgins, Irina, et al. "beta-vae: Learning basic visual concepts with
a constrained variational framework." (2016).
"""
def __init__(self, beta=4, **kwargs):
super().__init__(**kwargs)
self.beta = beta
def __call__(self, data, recon_data, latent_dist, is_train, storer, **kwargs):
storer = self._pre_call(is_train, storer)
rec_loss = _reconstruction_loss(data, recon_data,
storer=storer,
distribution=self.rec_dist)
kl_loss = _kl_normal_loss(*latent_dist, storer)
anneal_reg = (linear_annealing(0, 1, self.n_train_steps, self.steps_anneal)
if is_train else 1)
loss = rec_loss + anneal_reg * (self.beta * kl_loss)
if storer is not None:
storer['loss'].append(loss.item())
return loss
class BetaBLoss(BaseLoss):
"""
Compute the Beta-VAE loss as in [1]
Parameters
----------
C_init : float, optional
Starting annealed capacity C.
C_fin : float, optional
Final annealed capacity C.
gamma : float, optional
Weight of the KL divergence term.
kwargs:
Additional arguments for `BaseLoss`, e.g. rec_dist`.
References
----------
[1] Burgess, Christopher P., et al. "Understanding disentangling in
$\beta$-VAE." arXiv preprint arXiv:1804.03599 (2018).
"""
def __init__(self, C_init=0., C_fin=20., gamma=100., **kwargs):
super().__init__(**kwargs)
self.gamma = gamma
self.C_init = C_init
self.C_fin = C_fin
def __call__(self, data, recon_data, latent_dist, is_train, storer, **kwargs):
storer = self._pre_call(is_train, storer)
rec_loss = _reconstruction_loss(data, recon_data,
storer=storer,
distribution=self.rec_dist)
kl_loss = _kl_normal_loss(*latent_dist, storer)
C = (linear_annealing(self.C_init, self.C_fin, self.n_train_steps, self.steps_anneal)
if is_train else self.C_fin)
loss = rec_loss + self.gamma * (kl_loss - C).abs()
if storer is not None:
storer['loss'].append(loss.item())
return loss
class FactorKLoss(BaseLoss):
"""
Compute the Factor-VAE loss as per Algorithm 2 of [1]
Parameters
----------
device : torch.device
gamma : float, optional
Weight of the TC loss term. `gamma` in the paper.
discriminator : disvae.discriminator.Discriminator
optimizer_d : torch.optim
kwargs:
Additional arguments for `BaseLoss`, e.g. rec_dist`.
References
----------
[1] Kim, Hyunjik, and Andriy Mnih. "Disentangling by factorising."
arXiv preprint arXiv:1802.05983 (2018).
"""
def __init__(self, device,
gamma=10.,
disc_kwargs={},
optim_kwargs=dict(lr=5e-5, betas=(0.5, 0.9)),
**kwargs):
super().__init__(**kwargs)
self.gamma = gamma
self.device = device
self.discriminator = Discriminator(**disc_kwargs).to(self.device)
self.optimizer_d = optim.Adam(self.discriminator.parameters(), **optim_kwargs)
def __call__(self, *args, **kwargs):
raise ValueError("Use `call_optimize` to also train the discriminator")
def call_optimize(self, data, model, optimizer, storer):
storer = self._pre_call(model.training, storer)
# factor-vae split data into two batches. In the paper they sample 2 batches
batch_size = data.size(dim=0)
half_batch_size = batch_size // 2
data = data.split(half_batch_size)
data1 = data[0]
data2 = data[1]
# Factor VAE Loss
recon_batch, latent_dist, latent_sample1 = model(data1)
rec_loss = _reconstruction_loss(data1, recon_batch,
storer=storer,
distribution=self.rec_dist)
kl_loss = _kl_normal_loss(*latent_dist, storer)
d_z = self.discriminator(latent_sample1)
# We want log(p_true/p_false). If not using logisitc regression but softmax
# then p_true = exp(logit_true) / Z; p_false = exp(logit_false) / Z
# so log(p_true/p_false) = logit_true - logit_false
tc_loss = (d_z[:, 0] - d_z[:, 1]).mean()
# with sigmoid (not good results) should be `tc_loss = (2 * d_z.flatten()).mean()`
anneal_reg = (linear_annealing(0, 1, self.n_train_steps, self.steps_anneal)
if model.training else 1)
vae_loss = rec_loss + kl_loss + anneal_reg * self.gamma * tc_loss
if storer is not None:
storer['loss'].append(vae_loss.item())
storer['tc_loss'].append(tc_loss.item())
if not model.training:
# don't backprop if evaluating
return vae_loss
# Compute VAE gradients
optimizer.zero_grad()
vae_loss.backward(retain_graph=True)
# Discriminator Loss
# Get second sample of latent distribution
latent_sample2 = model.sample_latent(data2)
z_perm = _permute_dims(latent_sample2).detach()
d_z_perm = self.discriminator(z_perm)
# Calculate total correlation loss
# for cross entropy the target is the index => need to be long and says
# that it's first output for d_z and second for perm
ones = torch.ones(half_batch_size, dtype=torch.long, device=self.device)
zeros = torch.zeros_like(ones)
d_tc_loss = 0.5 * (F.cross_entropy(d_z, zeros) + F.cross_entropy(d_z_perm, ones))
# with sigmoid would be :
# d_tc_loss = 0.5 * (self.bce(d_z.flatten(), ones) + self.bce(d_z_perm.flatten(), 1 - ones))
# TO-DO: check ifshould also anneals discriminator if not becomes too good ???
#d_tc_loss = anneal_reg * d_tc_loss
# Compute discriminator gradients
self.optimizer_d.zero_grad()
d_tc_loss.backward()
# Update at the end (since pytorch 1.5. complains if update before)
optimizer.step()
self.optimizer_d.step()
if storer is not None:
storer['discrim_loss'].append(d_tc_loss.item())
return vae_loss
class BtcvaeLoss(BaseLoss):
"""
Compute the decomposed KL loss with either minibatch weighted sampling or
minibatch stratified sampling according to [1]
Parameters
----------
n_data: int
Number of data in the training set
alpha : float
Weight of the mutual information term.
beta : float
Weight of the total correlation term.
gamma : float
Weight of the dimension-wise KL term.
is_mss : bool
Whether to use minibatch stratified sampling instead of minibatch
weighted sampling.
kwargs:
Additional arguments for `BaseLoss`, e.g. rec_dist`.
References
----------
[1] Chen, Tian Qi, et al. "Isolating sources of disentanglement in variational
autoencoders." Advances in Neural Information Processing Systems. 2018.
"""
def __init__(self, n_data, alpha=1., beta=6., gamma=1., is_mss=True, **kwargs):
super().__init__(**kwargs)
self.n_data = n_data
self.beta = beta
self.alpha = alpha
self.gamma = gamma
self.is_mss = is_mss # minibatch stratified sampling
def __call__(self, data, recon_batch, latent_dist, is_train, storer,
latent_sample=None):
storer = self._pre_call(is_train, storer)
batch_size, latent_dim = latent_sample.shape
rec_loss = _reconstruction_loss(data, recon_batch,
storer=storer,
distribution=self.rec_dist)
log_pz, log_qz, log_prod_qzi, log_q_zCx = _get_log_pz_qz_prodzi_qzCx(latent_sample,
latent_dist,
self.n_data,
is_mss=self.is_mss)
# I[z;x] = KL[q(z,x)||q(x)q(z)] = E_x[KL[q(z|x)||q(z)]]
mi_loss = (log_q_zCx - log_qz).mean()
# TC[z] = KL[q(z)||\prod_i z_i]
tc_loss = (log_qz - log_prod_qzi).mean()
# dw_kl_loss is KL[q(z)||p(z)] instead of usual KL[q(z|x)||p(z))]
dw_kl_loss = (log_prod_qzi - log_pz).mean()
anneal_reg = (linear_annealing(0, 1, self.n_train_steps, self.steps_anneal)
if is_train else 1)
# total loss
loss = rec_loss + (self.alpha * mi_loss +
self.beta * tc_loss +
anneal_reg * self.gamma * dw_kl_loss)
if storer is not None:
storer['loss'].append(loss.item())
storer['mi_loss'].append(mi_loss.item())
storer['tc_loss'].append(tc_loss.item())
storer['dw_kl_loss'].append(dw_kl_loss.item())
# computing this for storing and comparaison purposes
_ = _kl_normal_loss(*latent_dist, storer)
return loss
def _reconstruction_loss(data, recon_data, distribution="bernoulli", storer=None):
"""
Calculates the per image reconstruction loss for a batch of data. I.e. negative
log likelihood.
Parameters
----------
data : torch.Tensor
Input data (e.g. batch of images). Shape : (batch_size, n_chan,
height, width).
recon_data : torch.Tensor
Reconstructed data. Shape : (batch_size, n_chan, height, width).
distribution : {"bernoulli", "gaussian", "laplace"}
Distribution of the likelihood on the each pixel. Implicitely defines the
loss Bernoulli corresponds to a binary cross entropy (bse) loss and is the
most commonly used. It has the issue that it doesn't penalize the same
way (0.1,0.2) and (0.4,0.5), which might not be optimal. Gaussian
distribution corresponds to MSE, and is sometimes used, but hard to train
ecause it ends up focusing only a few pixels that are very wrong. Laplace
distribution corresponds to L1 solves partially the issue of MSE.
storer : dict
Dictionary in which to store important variables for vizualisation.
Returns
-------
loss : torch.Tensor
Per image cross entropy (i.e. normalized per batch but not pixel and
channel)
"""
batch_size, n_chan, height, width = recon_data.size()
is_colored = n_chan == 3
if distribution == "bernoulli":
loss = F.binary_cross_entropy(recon_data, data, reduction="sum")
elif distribution == "gaussian":
# loss in [0,255] space but normalized by 255 to not be too big
loss = F.mse_loss(recon_data * 255, data * 255, reduction="sum") / 255
elif distribution == "laplace":
# loss in [0,255] space but normalized by 255 to not be too big but
# multiply by 255 and divide 255, is the same as not doing anything for L1
loss = F.l1_loss(recon_data, data, reduction="sum")
loss = loss * 3 # emperical value to give similar values than bernoulli => use same hyperparam
loss = loss * (loss != 0) # masking to avoid nan
else:
assert distribution not in RECON_DIST
raise ValueError("Unkown distribution: {}".format(distribution))
loss = loss / batch_size
if storer is not None:
storer['recon_loss'].append(loss.item())
return loss
def _kl_normal_loss(mean, logvar, storer=None):
"""
Calculates the KL divergence between a normal distribution
with diagonal covariance and a unit normal distribution.
Parameters
----------
mean : torch.Tensor
Mean of the normal distribution. Shape (batch_size, latent_dim) where
D is dimension of distribution.
logvar : torch.Tensor
Diagonal log variance of the normal distribution. Shape (batch_size,
latent_dim)
storer : dict
Dictionary in which to store important variables for vizualisation.
"""
latent_dim = mean.size(1)
# batch mean of kl for each latent dimension
latent_kl = 0.5 * (-1 - logvar + mean.pow(2) + logvar.exp()).mean(dim=0)
total_kl = latent_kl.sum()
if storer is not None:
storer['kl_loss'].append(total_kl.item())
for i in range(latent_dim):
storer['kl_loss_' + str(i)].append(latent_kl[i].item())
return total_kl
def _permute_dims(latent_sample):
"""
Implementation of Algorithm 1 in ref [1]. Randomly permutes the sample from
q(z) (latent_dist) across the batch for each of the latent dimensions (mean
and log_var).
Parameters
----------
latent_sample: torch.Tensor
sample from the latent dimension using the reparameterisation trick
shape : (batch_size, latent_dim).
References
----------
[1] Kim, Hyunjik, and Andriy Mnih. "Disentangling by factorising."
arXiv preprint arXiv:1802.05983 (2018).
"""
perm = torch.zeros_like(latent_sample)
batch_size, dim_z = perm.size()
for z in range(dim_z):
pi = torch.randperm(batch_size).to(latent_sample.device)
perm[:, z] = latent_sample[pi, z]
return perm
def linear_annealing(init, fin, step, annealing_steps):
"""Linear annealing of a parameter."""
if annealing_steps == 0:
return fin
assert fin > init
delta = fin - init
annealed = min(init + delta * step / annealing_steps, fin)
return annealed
# Batch TC specific
# TO-DO: test if mss is better!
def _get_log_pz_qz_prodzi_qzCx(latent_sample, latent_dist, n_data, is_mss=True):
batch_size, hidden_dim = latent_sample.shape
# calculate log q(z|x)
log_q_zCx = log_density_gaussian(latent_sample, *latent_dist).sum(dim=1)
# calculate log p(z)
# mean and log var is 0
zeros = torch.zeros_like(latent_sample)
log_pz = log_density_gaussian(latent_sample, zeros, zeros).sum(1)
mat_log_qz = matrix_log_density_gaussian(latent_sample, *latent_dist)
if is_mss:
# use stratification
log_iw_mat = log_importance_weight_matrix(batch_size, n_data).to(latent_sample.device)
mat_log_qz = mat_log_qz + log_iw_mat.view(batch_size, batch_size, 1)
log_qz = torch.logsumexp(mat_log_qz.sum(2), dim=1, keepdim=False)
log_prod_qzi = torch.logsumexp(mat_log_qz, dim=1, keepdim=False).sum(1)
return log_pz, log_qz, log_prod_qzi, log_q_zCx