-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path162.FindPeakElement.cpp
76 lines (74 loc) · 1.98 KB
/
162.FindPeakElement.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
* @lc app=leetcode id=162 lang=cpp
*
* [162] Find Peak Element
*
* https://leetcode.com/problems/find-peak-element/description/
*
* algorithms
* Medium (43.94%)
* Likes: 2637
* Dislikes: 2575
* Total Accepted: 468.3K
* Total Submissions: 1.1M
* Testcase Example: '[1,2,3,1]'
*
* A peak element is an element that is strictly greater than its neighbors.
*
* Given an integer array nums, find a peak element, and return its index. If
* the array contains multiple peaks, return the index to any of the peaks.
*
* You may imagine that nums[-1] = nums[n] = -∞.
*
*
* Example 1:
*
*
* Input: nums = [1,2,3,1]
* Output: 2
* Explanation: 3 is a peak element and your function should return the index
* number 2.
*
* Example 2:
*
*
* Input: nums = [1,2,1,3,5,6,4]
* Output: 5
* Explanation: Your function can return either index number 1 where the peak
* element is 2, or index number 5 where the peak element is 6.
*
*
* Constraints:
*
*
* 1 <= nums.length <= 1000
* -2^31 <= nums[i] <= 2^31 - 1
* nums[i] != nums[i + 1] for all valid i.
*
*
*
* Follow up: Could you implement a solution with logarithmic complexity?
*/
// @lc code=start
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while (left < right) {
int mid = (left + right) >> 2;
if (nums[mid] > nums[mid + 1]) {
// if nums[mid] > nums[mid + 1], there is at least 1 peak
// between [0, mid], even if nums[0] > nums[1] > ... >
// nums[mid], (and neiboring element can't be the same) in this
// case, nums[0] is the peak since nums[-1] = -inf
right = mid;
} else {
// same rule applies to cases when nums[mid] < nums[mid], in
// this case there is at least 1 peak between [mid + 1, N-1]
left = mid;
}
}
return left;
}
};
// @lc code=end