-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path154.FindMinimumInRotatedSortedArrayIi.cpp
83 lines (79 loc) · 2.01 KB
/
154.FindMinimumInRotatedSortedArrayIi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* @lc app=leetcode id=154 lang=cpp
*
* [154] Find Minimum in Rotated Sorted Array II
*
* https://leetcode.com/problems/find-minimum-in-rotated-sorted-array-ii/description/
*
* algorithms
* Hard (42.00%)
* Likes: 1464
* Dislikes: 271
* Total Accepted: 238.2K
* Total Submissions: 566.3K
* Testcase Example: '[1,3,5]'
*
* Suppose an array of length n sorted in ascending order is rotated between 1
* and n times. For example, the array nums = [0,1,4,4,5,6,7] might
* become:
*
*
* [4,5,6,7,0,1,4] if it was rotated 4 times.
* [0,1,4,4,5,6,7] if it was rotated 7 times.
*
*
* Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]] 1 time results
* in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]].
*
* Given the sorted rotated array nums that may contain duplicates, return the
* minimum element of this array.
*
*
* Example 1:
* Input: nums = [1,3,5]
* Output: 1
* Example 2:
* Input: nums = [2,2,2,0,1]
* Output: 0
*
*
* Constraints:
*
*
* n == nums.length
* 1 <= n <= 5000
* -5000 <= nums[i] <= 5000
* nums is sorted and rotated between 1 and n times.
*
*
*
* Follow up: This is the same as Find Minimum in Rotated Sorted Array but with
* duplicates. Would allow duplicates affect the run-time complexity? How and
* why?
*/
// @lc code=start
class Solution {
public:
int findMin(vector<int>& nums) {
int left = 0;
int right = nums.size() - 1;
while (left < right) {
// move the left boundary if its equal to right boundary
while (left < right && nums[left] == nums[right]) {
left++;
}
// if the array is already sorted or there's only 1 element, break
if (left == right || nums[left] < nums[right]) {
break;
}
int mid = (left + right) / 2;
if (nums[mid] >= nums[left]) {
left = mid + 1;
} else {
right = mid;
}
}
return nums[left];
}
};
// @lc code=end