-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitChatBot.py
47 lines (39 loc) · 1.6 KB
/
initChatBot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import sys
from bson import ObjectId
import pymongo
from langchain_community.document_loaders.mongodb import MongodbLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.chat_models import ChatOpenAI
from bson import ObjectId
import constants
# Initialize MongoDB client with correct connection string
client = pymongo.MongoClient("mongodb+srv://pramitbhatia25:GA45FDj59FEuqBht@cluster0.gqh1qhi.mongodb.net/?retryWrites=true&w=majority")
# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = constants.APIKey
# Select database and collection
db = client['test']
collection = db['users']
def initCustomModel(object_id):
filter_criteria = {"_id": object_id}
document = collection.find_one(filter=filter_criteria, projection={"notes": 1})
if document:
# Load JSON data using JSONLoader
notes = document.get("notes", [])
notes_text = "\n".join(notes)
loader = MongodbLoader(
connection_string="mongodb+srv://pramitbhatia25:GA45FDj59FEuqBht@cluster0.gqh1qhi.mongodb.net/?retryWrites=true&w=majority",
db_name="test",
collection_name="users",
filter_criteria=filter_criteria,
)
# var=loader.load()
# print(var)s
index = VectorstoreIndexCreator().from_loaders([loader])
print("Index: ", index)
query = sys.argv[1]
print("Query:", query)
print("Result:", index.query(query, llm=ChatOpenAI()))
else:
print('Error: Document not found')
initCustomModel(ObjectId("65c8a06e3a46efa1754079cc"))