Skip to content

Latest commit

 

History

History
53 lines (39 loc) · 3.44 KB

README.md

File metadata and controls

53 lines (39 loc) · 3.44 KB

Partial Residual Networks

This is the implementation of "Enriching Variety of Layer-wise Learning Information by Gradient Combination" using Darknet framwork.

Our paper will be appear in 2019 ICCV Workshop on Low-Power Computer Vision.

For installing Darknet framework, you can refer to darknet(pjreddie) or darknet(AlexeyAB).

We provide YOLO-v3-tiny-PRN cfg file and COCO pre-trained model. You can use provided files to get following results on COCO test-dev set:

Model mAP@0.5 BFLOPs # Parameter GPU FPS CPU FPS
YOLO-v3-tiny [1] 33.1 5.571 8.86M 300 8
YOLO-v3-tiny-PRN 33.1 3.467 4.95M 370 13

We also provide cfg file and COCO pre-trained model for morden backbone EfficientNet_b0 [2]. For training this model, you should install darknet(AlexeyAB).

Model Size mAP@0.5 BFLOPs
EfficientNet_b0-PRN 416x416 45.5 3.730
EfficientNet_b0-PRN 320x320 41.0 2.208

Here we provide some experimental results on COCO test-dev set which are not listed in the paper.

Model Size mAP@0.5 BFLOPs # Parameter
Pelee [3] 304x304 38.3 2.58 5.98M
Pelee-PRN 320x320 40.9 2.39 3.16M
Pelee-YOLOv3 [1] 320x320 41.4 2.99 3.91M
Pelee-FPN [4] 320x320 41.4 2.86 3.75M
Pelee-PRN-3l 320x320 42.5 3.98 3.36M
mPelee-PRN 320x320 42.7 2.82 3.81M
Model Size mAP@0.5 BFLOPs # Parameter GPU FPS CPU FPS
Pelee-PRN 416x416 45.0 4.04 3.16M 111 6.0
Pelee-YOLOv3 [1] 416x416 45.3 5.06 3.91M 115 5.5
Pelee-FPN [4] 416x416 45.7 4.84 3.75M 115 5.8
Pelee-PRN-3l 416x416 46.3 5.03 3.36M
mPelee-PRN 416x416 46.8 4.76 3.81M 104

Reference

[1] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

[2] Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv preprint arXiv:1905.11946.

[3] Wang, R. J., Li, X., & Ling, C. X. (2018). Pelee: A real-time object detection system on mobile devices. In Advances in Neural Information Processing Systems (pp. 1963-1972).

[4] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2117-2125).

Acknowledgements

https://github.com/AlexeyAB/darknet