-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoderation.py
137 lines (118 loc) · 5.3 KB
/
moderation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from models import pos_neg_neu_model, strongest_emotion_model, all_emotion_model, zero_shot_classifier, vader, custom_model
from pymongo.mongo_client import MongoClient
# from googleapiclient import discovery
from dotenv import load_dotenv
import os
import json
load_dotenv()
# API_KEY = os.getenv("GOOGLE_API_KEY")
def check_message(message, guild_id, mongo_client):
neg_bad = False
unwanted_emotions = []
zero_shot_labels = []
curr_config = mongo_client.puffin.config
lexicon = []
if len([a for a in curr_config.find({"guild": guild_id})]) == 0:
print("Guild not in config - maybe it hasn't been configured yet?")
return (False, "Guild not in config - maybe it hasn't been configured yet?")
else:
guild_config = [a for a in curr_config.find({"guild": guild_id})][0]
if "negative_messages_bad" in guild_config and guild_config["negative_messages_bad"] == "True":
neg_bad = True
if "unwanted_emotions" in guild_config:
unwanted_emotions = guild_config["unwanted_emotions"]
if "zero_shot_labels" in guild_config:
zero_shot_labels = guild_config["zero_shot_labels"]
if "lexicon" in guild_config:
lexicon = guild_config["lexicon"]
# analyze_request = {
# 'comment': {'text': 'friendly greetings from python'},
# 'requestedAttributes': {'TOXICITY': {}}
# }
# whether the message is positive, negative, or neutral
base_message = pos_neg_neu_model(message)
sent_label = base_message[0]["label"]
sent_score = base_message[0]["score"]
# emotion of the message
emotions = all_emotion_model(message)[0]
big_emotions = []
custom_model_sent = custom_model(message)[0]["label"]
custom_model_score = custom_model(message)[0]["score"]
# toxicity_response = google_api_client.comments().analyze(body=analyze_request).execute()
# toxicity_response = float(json.dumps(toxicity_response["attributeScores"]["TOXICITY"]["summaryScore"]["value"], indent=2))
if lexicon:
vader.lexicon.update(lexicon)
vader_response = vader.polarity_scores(message)["compound"]
for emotion in emotions:
if emotion["score"] > 0.6:
big_emotions.append(emotion["label"])
if emotion["score"] == max([a["score"] for a in emotions]):
biggest_emotion = emotion["label"]
if emotion["score"] == sorted([a["score"] for a in emotions])[-2]:
second_biggest_emotion = emotion["label"]
if neg_bad:
if sent_label == "NEG" and sent_score < 0.8:
if biggest_emotion in unwanted_emotions:
return (True, f"Negative, contains unwanted emotion {biggest_emotion}")
elif second_biggest_emotion in unwanted_emotions:
return (True, f"Negative, contains unwanted emotion {second_biggest_emotion}")
else:
if sent_label == "NEG" and sent_score > 0.8:
return (True, "Very negative")
else:
if vader_response < -0.4:
return (True, "Very negative")
if custom_model_sent=="LABEL_0" and custom_model_score > 0.8:
return (True, "Message is very negative")
return (False, "Not negative, does not contain an unwanted emotion")
else:
if (biggest_emotion in unwanted_emotions) and (not ((sent_label == "NEU" and sent_score > 0.60) or (sent_label == "POS" and sent_score > 0.60))):
print(sent_label)
print(sent_score)
return (True, f"Unwanted emotion {biggest_emotion}")
else:
print("vader response" + str(vader_response))
if vader_response < -0.4:
return (True, "Very negative")
return (False, "Does not contain an unwanted emotion OR seems to be very pos/neutral")
# zero shot classification
zero_shot = zero_shot_classifier(message, zero_shot_labels, multi_label=True)
for label in zero_shot["labels"]:
if (zero_shot_labels["scores"][zero_shot_labels["labels"].index(label)] > 0.8):
return (True, f"Message contains custom label {label}")
return (False, "Not negative, does not contain unwanted emotions, and does not contain custom filters")
if __name__ == "__main__":
# neg_bad = False
# unwanted_emotions = []
# zero_shot_labels = []
#
#
#
#
# # whether the message is positive, negative, or neutral
# base_message = pos_neg_neu_model("U joking or fr?")
# sent_label = base_message[0]["label"]
# sent_score = base_message[0]["score"]
# # emotion of the message
# print(base_message)
# google_api_client = discovery.build(
# "commentanalyzer",
# "v1alpha1",
# developerKey=API_KEY,
# discoveryServiceUrl="https://commentanalyzer.googleapis.com/$discovery/rest?version=v1alpha1",
# static_discovery=False,
# )
#
# analyze_request = {
# 'comment': {'text': 'friendly greetings from python'},
# 'requestedAttributes': {'TOXICITY': {}}
# }
#
# response = google_api_client.comments().analyze(body=analyze_request).execute()
# response = float(json.dumps(response["attributeScores"]["TOXICITY"]["summaryScore"]["value"], indent=2))
#
#
#
# print(response)
# print(type(response))
print("here")