-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
412 lines (354 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import json
import time
import argparse
import random
import logging
import torch
import numpy as np
from typing import Dict, List, Tuple, Set, Optional
# from torchsummary import summary
# from prefetch_generator import BackgroundGenerator
BackgroundGenerator = lambda x: x
# print = logging.info
from tqdm import tqdm
from collections import Counter
from torch.optim import Adam, SGD
from openjere.preprocessings import (
Selection_preprocessing,
Twotagging_preprocessing,
Seq2umt_preprocessing,
WDec_preprocessing,
Copymtl_preprocessing,
)
from openjere.dataloaders import (
Selection_Dataset,
Selection_loader,
Twotagging_Dataset,
Twotagging_loader,
Seq2umt_Dataset,
Seq2umt_loader,
WDec_Dataset,
WDec_loader,
Copymtl_Dataset,
Copymtl_loader,
)
from openjere.metrics import F1_triplet
from openjere.models import (
MultiHeadSelection,
Twotagging,
Seq2umt,
WDec,
CopyMTL,
)
from openjere.config import Hyper
parser = argparse.ArgumentParser()
parser.add_argument(
"--exp_name",
"-e",
type=str,
default="chinese_seq2umt",
help="experiments/exp_name.json",
)
parser.add_argument(
"--mode",
"-m",
type=str,
default="train",
help="preprocessing|train|evaluation|subevaluation|data_summary|model_summary",
)
args = parser.parse_args()
class Runner(object):
def __init__(self, exp_name: str):
self.exp_name = exp_name
self.model_dir = "saved_models"
self.hyper = Hyper(os.path.join("experiments", self.exp_name + ".json"))
self.gpu = self.hyper.gpu
self.preprocessor = self._preprocessor(self.hyper.model)
# self.metrics = F1_triplet()
self.optimizer = None
self.model = None
self.Dataset, self.Loader = self._init_loader(self.hyper.model)
logging.basicConfig(
filename=os.path.join("experiments", self.exp_name + ".log"),
filemode="w",
format="%(asctime)s - %(message)s",
level=logging.INFO,
)
def _init_loader(self, name: str):
dataset_dic = {
"selection": Selection_Dataset,
"twotagging": Twotagging_Dataset,
"seq2umt": Seq2umt_Dataset,
"wdec": WDec_Dataset,
"copymtl": Copymtl_Dataset,
}
loader_dic = {
"selection": Selection_loader,
"twotagging": Twotagging_loader,
"seq2umt": Seq2umt_loader,
"wdec": WDec_loader,
"copymtl": Copymtl_loader,
}
Dataset = dataset_dic[name]
Loader = loader_dic[name]
if name not in dataset_dic or name not in loader_dic:
raise ValueError("wrong name!")
else:
return Dataset, Loader
def _optimizer(self, name, model):
m = {"adam": Adam(model.parameters()), "sgd": SGD(model.parameters(), lr=0.5)}
return m[name]
def _preprocessor(self, name: str):
p = {
"selection": Selection_preprocessing(self.hyper),
"twotagging": Twotagging_preprocessing(self.hyper),
"seq2umt": Seq2umt_preprocessing(self.hyper),
"wdec": WDec_preprocessing(self.hyper),
"copymtl": Copymtl_preprocessing(self.hyper),
}
return p[name]
def _init_model(self):
logging.info(self.hyper.model)
name = self.hyper.model
p = {
"selection": MultiHeadSelection,
"twotagging": Twotagging,
"seq2umt": Seq2umt,
"wdec": WDec,
"copymtl": CopyMTL,
}
self.model = p[name](self.hyper).cuda(self.gpu)
def preprocessing(self):
self.preprocessor.gen_relation_vocab()
self.preprocessor.gen_all_data()
self.preprocessor.gen_vocab(min_freq=2)
# for ner only
self.preprocessor.gen_bio_vocab()
def run(self, mode: str):
if mode == "preprocessing":
self.preprocessing()
elif mode == "train":
self.hyper.vocab_init()
self._init_model()
self.optimizer = self._optimizer(self.hyper.optimizer, self.model)
self.train()
elif mode == "evaluation":
self.hyper.vocab_init()
self._init_model()
# self.load_model(str(self.hyper.evaluation_epoch))
self.load_model("best")
# self.load_model("2")
test_set = self.Dataset(self.hyper, self.hyper.test)
loader = self.Loader(
test_set,
batch_size=self.hyper.batch_size_eval,
pin_memory=True,
num_workers=8,
)
f1, log = self.evaluation(loader)
print(log)
print("f1 = ", f1)
elif mode == "data_summary":
self.hyper.vocab_init()
# for path in self.hyper.raw_data_list:
# self.summary_data(path)
self.summary_data(self.hyper.test)
elif mode == "model_summary":
self.hyper.vocab_init()
self._init_model()
self.load_model("best")
parameter_num = np.sum([p.numel() for p in self.model.parameters()]).item()
print(self.model)
print(parameter_num)
elif mode == "subevaluation":
self.hyper.vocab_init()
self._init_model()
self.load_model("best")
for data in self.hyper.subsets:
test_set = self.Dataset(self.hyper, data)
loader = self.Loader(
test_set,
batch_size=self.hyper.batch_size_eval,
pin_memory=True,
num_workers=8,
)
f1, log = self.evaluation(loader)
print(log)
print("f1 = ", f1)
# raise NotImplementedError("subevaluation")
elif mode == "debug":
self.hyper.vocab_init()
# self._init_model()
train_set = self.Dataset(self.hyper, self.hyper.dev)
loader = self.Loader(
train_set,
batch_size=self.hyper.batch_size_train,
pin_memory=True,
num_workers=0,
)
for epoch in range(self.hyper.epoch_num):
pbar = tqdm(enumerate(BackgroundGenerator(loader)), total=len(loader))
for batch_idx, sample in pbar:
print(sample.__dict__)
exit()
else:
raise ValueError("invalid mode")
def load_model(self, name: str):
self.model.load_state_dict(
torch.load(os.path.join(self.model_dir, self.exp_name + "_" + name))
)
def save_model(self, name: str):
# def save_model(self, epoch: int):
if not os.path.exists(self.model_dir):
os.mkdir(self.model_dir)
torch.save(
self.model.state_dict(),
os.path.join(self.model_dir, self.exp_name + "_" + name),
)
def summary_data(self, dataset):
def count_numsubset_overlap(triplets: List[Dict[str, str]], n: int = 2) -> None:
def _eq_tripletsNum_n(triplets, n):
return len(triplets) == n
def _is_olp(ts):
ent_list = [t["subject"] for t in ts] + [t["object"] for t in ts]
ent_set = set(ent_list)
return len(ent_list) != len(ent_set)
cnt_all = 0
cnt_olp = 0
for ts in triplets:
if _eq_tripletsNum_n(ts, n):
cnt_all += 1
if _is_olp(ts):
cnt_olp += 1
log = (
"num = %d, all sentence = %d, overlapped sentence = %d, rate = %.2f"
% (n, cnt_all, cnt_olp, cnt_olp / cnt_all * 100)
)
print(log)
# TODO
data = self.Dataset(self.hyper, dataset)
loader = self.Loader(data, batch_size=400, pin_memory=True, num_workers=4)
pbar = tqdm(enumerate(BackgroundGenerator(loader)), total=len(loader))
len_sent_list = []
triplet_num = []
triplets = []
## count_numsubset_overlap
# for batch_ndx, sample in pbar:
# len_sent_list.extend(sample.length)
# triplet_num.extend(list(map(len, sample.spo_gold)))
# triplets.extend(sample.spo_gold)
# count_numsubset_overlap(triplets, 2)
# exit()
print(dataset)
print("sentence num %d" % len(len_sent_list))
print("all triplet num %d" % sum(triplet_num))
print("avg sentence length %f" % (sum(len_sent_list) / len(len_sent_list)))
print("avg triplet num %f" % (sum(triplet_num) / len(triplet_num)))
print(Counter(triplet_num))
print("\n")
def evaluation(self, loader):
self.model.metrics.reset()
self.model.eval()
pbar = tqdm(enumerate(BackgroundGenerator(loader)), total=len(loader))
with torch.no_grad():
for batch_ndx, sample in pbar:
output = self.model(sample, is_train=False)
# # DEBUG: error analysis
# # WDec
# for text, g, p, seq, in zip(
# output["text"],
# output["spo_gold"],
# output["decode_result"],
# output["seq"],
# ):
# print(text)
# print(g)
# print(p)
# print(seq)
# print("-" * 50)
# exit()
# Seq2UMT
# for text, g, p in zip(
# output["text"], output["spo_gold"], output["decode_result"],
# ):
# print(text)
# print(g)
# print(p)
# exit()
self.model.run_metrics(output)
result = self.model.get_metric()
# print(
# ", ".join(
# [
# "%s: %.4f" % (name, value)
# for name, value in result.items()
# if not name.startswith("_")
# ]
# )
# + " ||"
# )
score = result["fscore"]
log = (
", ".join(
[
"%s: %.4f" % (name, value)
for name, value in result.items()
if not name.startswith("_")
]
)
+ " ||"
)
return result["fscore"], log
def train(self):
train_set = self.Dataset(self.hyper, self.hyper.train)
train_loader = self.Loader(
train_set,
batch_size=self.hyper.batch_size_train,
pin_memory=True,
num_workers=8,
)
dev_set = self.Dataset(self.hyper, self.hyper.dev)
dev_loader = self.Loader(
dev_set,
batch_size=self.hyper.batch_size_eval,
pin_memory=True,
num_workers=4,
)
test_set = self.Dataset(self.hyper, self.hyper.test)
test_loader = self.Loader(
test_set,
batch_size=self.hyper.batch_size_eval,
pin_memory=True,
num_workers=4,
)
score = 0
best_epoch = 0
for epoch in range(self.hyper.epoch_num):
self.model.train()
pbar = tqdm(
enumerate(BackgroundGenerator(train_loader)), total=len(train_loader)
)
for batch_idx, sample in pbar:
self.optimizer.zero_grad()
output = self.model(sample, is_train=True)
loss = output["loss"]
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 10.0)
self.optimizer.step()
pbar.set_description(output["description"](epoch, self.hyper.epoch_num))
self.save_model(str(epoch))
if epoch % self.hyper.print_epoch == 0 and epoch >= 2:
new_score, log = self.evaluation(dev_loader)
logging.info(log)
if new_score >= score:
score = new_score
best_epoch = epoch
self.save_model("best")
logging.info("best epoch: %d \t F1 = %.2f" % (best_epoch, score))
self.load_model("best")
new_score, log = self.evaluation(test_loader)
logging.info(log)
if __name__ == "__main__":
config = Runner(exp_name=args.exp_name)
config.run(mode=args.mode)