-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpainterly_rendering.py
216 lines (186 loc) · 7.95 KB
/
painterly_rendering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import copy
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import os
import sys
import time
import traceback
import numpy as np
import PIL
import torch
import wandb
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
import config
import sketch_utils as utils
from models.loss import Loss
from models.painter_params import Painter, PainterOptimizer
def load_renderer(args, target_im=None, mask=None):
renderer = Painter(num_strokes=args.num_paths, args=args,
num_segments=args.num_segments,
imsize=args.image_scale,
device=args.device,
target_im=target_im,
mask=mask)
renderer = renderer.to(args.device)
return renderer
def get_target(args):
target = Image.open(args.target)
if target.mode == "RGBA":
# Create a white rgba background
new_image = Image.new("RGBA", target.size, "WHITE")
# Paste the image on the background.
new_image.paste(target, (0, 0), target)
target = new_image
target = target.convert("RGB")
masked_im, mask = utils.get_mask_u2net(args, target)
if args.mask_object:
target = masked_im
if args.fix_scale:
target = utils.fix_image_scale(target)
transforms_ = []
if target.size[0] != target.size[1]:
transforms_.append(transforms.Resize(
(224, 224), interpolation=PIL.Image.BICUBIC))
else:
transforms_.append(transforms.Resize(
224, interpolation=PIL.Image.BICUBIC))
transforms_.append(transforms.CenterCrop(224))
transforms_.append(transforms.ToTensor())
data_transforms = transforms.Compose(transforms_)
target_ = data_transforms(target).unsqueeze(0).to(args.device)
return target_, mask
# 3 x 224 x 224
def convert_to_grayscale(im_as_arr):
grayscale_im = np.sum(np.abs(im_as_arr), axis=0)
im_max = np.percentile(grayscale_im, 90)
im_min = np.percentile(grayscale_im, 10)
grayscale_im = (np.clip((grayscale_im - im_min) / (im_max - im_min), 0, 1))
grayscale_im = np.expand_dims(grayscale_im, axis=0)
return grayscale_im
def format_np_output(np_arr):
# Phase/Case 1: The np arr only has 2 dimensions
# Result: Add a dimension at the beginning
if len(np_arr.shape) == 2:
np_arr = np.expand_dims(np_arr, axis=0)
# Phase/Case 2: Np arr has only 1 channel (assuming first dim is channel)
# Result: Repeat first channel and convert 1xWxH to 3xWxH
if np_arr.shape[0] == 1:
np_arr = np.repeat(np_arr, 3, axis=0)
# Phase/Case 3: Np arr is of shape 3xWxH
# Result: Convert it to WxHx3 in order to make it saveable by PIL
if np_arr.shape[0] == 3:
np_arr = np_arr.transpose(1, 2, 0)
# Phase/Case 4: NP arr is normalized between 0-1
# Result: Multiply with 255 and change type to make it saveable by PIL
if np.max(np_arr) <= 1:
np_arr = (np_arr*255).astype(np.uint8)
return np_arr
def main(args):
loss_func = Loss(args)
if not args.train_with_diffusion or os.path.exists(args.target):
inputs, mask = get_target(args)
utils.log_input(args.use_wandb, 0, inputs, args.output_dir)
renderer = load_renderer(args, inputs, mask)
else:
inputs = None
renderer = load_renderer(args)
optimizer = PainterOptimizer(args, renderer)
counter = 0
configs_to_save = {"loss_eval": []}
min_delta = 1e-5
renderer.set_random_noise(0)
original_shape = None
if args.points_init != 'none':
original_shape = torch.load(args.points_init)
with torch.cuda.amp.autocast(enabled=False):
img = renderer.init_image(stage=0, original_shape=original_shape, args=args)
optimizer.init_optimizers()
scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
# not using tdqm for jupyter demo
if args.display:
epoch_range = range(args.num_iter)
else:
# epoch_range = range(args.num_iter)
epoch_range = tqdm(range(args.num_iter))
for epoch in epoch_range:
if not args.display:
epoch_range.refresh()
renderer.set_random_noise(epoch)
# renderer.set_random_noise(0)
if args.lr_scheduler:
optimizer.update_lr(counter)
grad_clip = 2 + 6 * min(1, counter / args.num_iter)
# grad_clip = 0.0002
start = time.time()
optimizer.zero_grad_()
with torch.cuda.amp.autocast(enabled=False):
sketches = renderer.get_image().to(args.device)
if args.train_with_diffusion:
with torch.cuda.amp.autocast(enabled=args.fp16):
losses_dict = loss_func(sketches, inputs, renderer.get_color_parameters(), renderer, counter, optimizer, grad_clip=grad_clip)
loss = sum(list(losses_dict.values()))
scaler.scale(loss).backward()
# assert(torch.isfinite(sss.grad).all())
optimizer.step_(scaler)
scaler.update()
temp_points = copy.deepcopy(renderer.get_points_parans())
else:
sketches = renderer.get_image().to(args.device)
losses_dict = loss_func(sketches, inputs.detach(), renderer.get_color_parameters(), renderer, counter, optimizer, grad_clip=grad_clip)
loss = sum(list(losses_dict.values()))
loss.backward()
temp_points = copy.deepcopy(renderer.get_points_parans())
optimizer.step_()
if epoch % args.save_interval == 0:
utils.plot_batch(inputs, sketches, f"{args.output_dir}/jpg_logs", counter,
use_wandb=args.use_wandb, title=f"iter{epoch}.jpg")
renderer.save_svg(
f"{args.output_dir}/svg_logs", f"svg_iter{epoch}")
# saved_points = []
# for point in temp_points:
# saved_points.append(point.data)
# torch.save(saved_points, f"{args.output_dir}/points_{epoch}.pt")
if epoch % args.eval_interval == 0:
with torch.no_grad():
losses_dict_eval = loss_func(sketches, inputs, renderer.get_color_parameters(
), renderer.get_points_parans(), counter, optimizer, mode="eval")
loss_eval = sum(list(losses_dict_eval.values()))
configs_to_save["loss_eval"].append(loss_eval.item())
for k in losses_dict_eval.keys():
if k not in configs_to_save.keys():
configs_to_save[k] = []
configs_to_save[k].append(losses_dict_eval[k].item())
if args.train_with_diffusion and epoch % args.update_interval == 0 and epoch != 0 and args.init_point == 'none':
renderer.points_restrict(args)
optimizer.init_optimizers()
renderer.save_svg(f"{args.output_dir}/svg_logs", f"svg_iter{epoch}_reset")
if counter == 0 and args.attention_init:
utils.plot_atten(renderer.get_attn(), renderer.get_thresh(), inputs, renderer.get_inds(),
args.use_wandb, "{}/{}.jpg".format(
args.output_dir, "attention_map"),
args.saliency_model, args.display_logs)
if args.use_wandb:
wandb_dict = {"loss": loss.item(), "lr": optimizer.get_lr()}
for k in losses_dict.keys():
wandb_dict[k] = losses_dict[k].item()
wandb.log(wandb_dict, step=counter)
counter += 1
renderer.save_svg(args.output_dir, "final_svg")
return configs_to_save
if __name__ == "__main__":
args = config.parse_arguments()
final_config = vars(args)
try:
configs_to_save = main(args)
except BaseException as err:
print(f"Unexpected error occurred:\n {err}")
print(traceback.format_exc())
sys.exit(1)
for k in configs_to_save.keys():
final_config[k] = configs_to_save[k]
np.save(f"{args.output_dir}/config.npy", final_config)
if args.use_wandb:
wandb.finish()