-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvisualise_grasp_rectangle.py
126 lines (104 loc) · 4.91 KB
/
visualise_grasp_rectangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
import logging
import matplotlib.pyplot as plt
import torch.utils.data
from utils.data import get_dataset
from utils.dataset_processing.grasp import detect_grasps,GraspRectangles
from models.common import post_process_output
import cv2
import matplotlib
plt.rcParams.update({
"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": ["Helvetica"]})
matplotlib.use("TkAgg")
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate GG-CNN')
# Network
parser.add_argument('--network', type=str,default="./output/models/220623_1311_/epoch_08_iou_0.97", help='Path to saved network to evaluate')
# Dataset & Data & Training
parser.add_argument('--dataset', type=str, default="cornell",help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str,default="/home/sam/Desktop/archive111" ,help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=0, help='Use Depth image for training (1/0)')
parser.add_argument('--use-rgb', type=int, default=1, help='Use RGB image for training (0/1)')
parser.add_argument('--split', type=float, default=0.9,
help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split for cross validation.')
parser.add_argument('--num-workers', type=int, default=8, help='Dataset workers')
parser.add_argument('--batch-size', type=int, default=1, help='Batch size')
parser.add_argument('--vis', type=bool, default=False, help='vis')
parser.add_argument('--epochs', type=int, default=2000, help='Training epochs')
parser.add_argument('--batches-per-epoch', type=int, default=200, help='Batches per Epoch')
parser.add_argument('--val-batches', type=int, default=32, help='Validation Batches')
# Logging etc.
parser.add_argument('--description', type=str, default='', help='Training description')
parser.add_argument('--outdir', type=str, default='output/models/', help='Training Output Directory')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print(args.network)
print(args.use_rgb,args.use_depth)
net = torch.load(args.network)
# net_ggcnn = torch.load('./output/models/211112_1458_/epoch_30_iou_0.75')
device = torch.device("cuda:0")
Dataset = get_dataset(args.dataset)
val_dataset = Dataset(args.dataset_path, start=args.split, end=1.0, ds_rotate=args.ds_rotate,
random_rotate=True, random_zoom=False,
include_depth=args.use_depth, include_rgb=args.use_rgb)
val_data = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=True,
num_workers=args.num_workers
)
results = {
'correct': 0,
'failed': 0,
'loss': 0,
'losses': {
}
}
ld = len(val_data)
with torch.no_grad():
batch_idx = 0
fig = plt.figure(figsize=(20, 10))
# ax = fig.add_subplot(5, 5, 1)
# while batch_idx < 100:
for id,(x, y, didx, rot, zoom_factor) in enumerate( val_data):
# batch_idx += 1
if id>24:
break
print(id)
print(x.shape)
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
results['loss'] += loss.item() / ld
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item() / ld
q_out, ang_out, w_out = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
gs_1 = detect_grasps(q_out, ang_out, width_img=w_out, no_grasps=1)
rgb_img=val_dataset.get_rgb(didx, rot, zoom_factor, normalise=False)
# print(rgb_img)
ax = fig.add_subplot(5, 5, id+1)
ax.imshow(rgb_img)
ax.axis('off')
for g in gs_1:
g.plot(ax)
plt.show()
# s = evaluation.calculate_iou_match(q_out, ang_out,
# val_data.dataset.get_gtbb(didx, rot, zoom_factor),
# no_grasps=2,
# grasp_width=w_out,
# )
#
# if s:
# results['correct'] += 1
# else:
# results['failed'] += 1