Foxg1_interactome<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/interactome filtered_hdac_avg.txt", dec=",",sep="\t", header = TRUE, quote="", fill=FALSE,)
Foxg1_interactome_df<- as.data.frame(Foxg1_interactome)
row.names(Foxg1_interactome_df) <- make.names(Foxg1_interactome_df[,"Protein"],TRUE)
Foxg1_interactome_df$Mean.of.log.FC <- as.numeric(Foxg1_interactome_df$Mean.of.log.FC)
heatmap_interactome<- ggplot(data=Foxg1_interactome_df, aes(x=average, y=Protein, fill=Mean.of.log.FC))+
geom_tile(color = "white")+
scale_fill_gradient2(low = "dodgerblue4", high = "firebrick", mid = "white",
midpoint = 2, limit = c(0,5), space = "Lab"
) +
labs(x="samples", y = "Proteins", font=22)+
theme_minimal()+
theme(axis.text.x = element_text(vjust = 1,
size = 14, hjust = 1))+
theme(axis.text.y = element_text(vjust = 1,
size = 18, hjust = 1))+
coord_fixed()
pdf("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Output/Figure 4/210722_FOXG1_HDAC_interactome_heatmap_mean.pdf",
width=4,
height=3)
dev.off()
## png
## 2
heatmap_interactome
## FOXG1-HDAC effect on the transcriptome
#read in files
all_genes<- read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy19-[all_genes_TSA_vs_DMSO].tabular",
header=TRUE,
sep = "\t",)
shFoxg1_TSAvsDMSO<- read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy4-[shFoxg1_TSA_vs_DMSO_DE].tabular",
header=TRUE,
sep = "\t",)
shCtrl_TSAvsDMSO<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy5-[shCtrl_TSA_vs_DMSO_DE].tabular",
header=TRUE,
sep = "\t",)
shFoxg1vsshCtrl<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy6-[shFoxg1_vs_shCtrl_DE].tabular",
header=TRUE,
sep = "\t",)
k27ac_loss_DE<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy139-[K27ac_FOXG1_filtered_peaks_Cluster3].tabular",
header=FALSE,
sep = "\t",)
k27ac_down<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy66-[down_K27ac__Annotated_Peaks].tabular",
header=TRUE,
sep = "\t",)
k27ac_up<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy64-[up_K27ac__Annotated_Peaks].tabular",
header=TRUE,
sep = "\t",)
Foxg1_peaks<-read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy638-[FOXG1_N1_filtered_annotated_peaks].tabular", header=TRUE, sep="\t",)
k27ac_increase_foxg1<- read.table("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Input Files/Figure 4/Galaxy136-[K27ac_FOXG1_filtered_peaks_Cluster2].tabular",
header=TRUE,
sep = "\t",)
# Filter increased and diecreased genes upon KD and TSA treatment
Foxg1KD_decreased<-shFoxg1vsshCtrl[(shFoxg1vsshCtrl$log2FoldChange<=(-0.5) & shFoxg1vsshCtrl$padj<=0.01),]
Foxg1KD_increased<-shFoxg1vsshCtrl[(shFoxg1vsshCtrl$log2FoldChange>=(0.5) & shFoxg1vsshCtrl$padj<=0.01),]
Foxg1KD_TSA_decreased<-shFoxg1_TSAvsDMSO[(shFoxg1_TSAvsDMSO$log2FoldChange<=(-0.5) & shFoxg1_TSAvsDMSO$padj<=0.01),]
Foxg1KD_TSA_increased<-shFoxg1_TSAvsDMSO[(shFoxg1_TSAvsDMSO$log2FoldChange>=(0.5) & shFoxg1_TSAvsDMSO$padj<=0.01),]
Foxg1KD_TSA_nc<-shFoxg1_TSAvsDMSO[(abs(shFoxg1_TSAvsDMSO$log2FoldChange)<0.5 & shFoxg1_TSAvsDMSO$padj>=0.01),]
WT_TSA_decreased<- shCtrl_TSAvsDMSO[(shCtrl_TSAvsDMSO$log2FoldChange<=(-0.5) & shCtrl_TSAvsDMSO$padj<=0.01),]
WT_TSA_increased<- shCtrl_TSAvsDMSO[(shCtrl_TSAvsDMSO$log2FoldChange>=(0.5) & shCtrl_TSAvsDMSO$padj<=0.01),]
k27ac_loss_increased<- k27ac_loss_DE[(k27ac_loss_DE$V3>=0.5 & k27ac_loss_DE$V6<=0.01),]
k27ac_loss_decreased<- k27ac_loss_DE[(k27ac_loss_DE$V3<=(-0.5) & k27ac_loss_DE$V6<=0.01),]
### annotate ENSEMBL ID to gene symbol
background_genes<-bitr(all_genes$baseMean, fromType = "ENSEMBL", toType = "ENTREZID", OrgDb = org.Mm.eg.db, drop = TRUE)
k27ac_down_symbol<-bitr(k27ac_down$geneId, fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Mm.eg.db, drop = TRUE)
k27ac_up_symbol<-bitr(k27ac_up$geneId, fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Mm.eg.db, drop = TRUE)
Foxg1_peaks_symbol<-bitr(Foxg1_peaks$geneId, fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Mm.eg.db, drop = TRUE)
k27ac_increase_foxg1_symbol<-bitr(k27ac_increase_foxg1$geneId, fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Mm.eg.db, drop = TRUE)
## png
## 2
venn_repression_overlap<-calculate.overlap(venn_list_repression)
venn_repression_overlap_df<-data.frame(venn_repression_overlap$a3)
write.csv(venn_repression_overlap_df, "~/Integrative-multi-omics-analyses-of-FOXG1-functions/Output/Figure 4/repression_TSA_venn_overlap_reference_table.csv")
## png
## 2
Venn_intersect_rep<-bitr(venn_repression_overlap$a3, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Mm.eg.db, drop = TRUE)
GO_TSA_rep<-enrichGO(gene= Venn_intersect_rep$ENTREZID,
OrgDb = org.Mm.eg.db,
keyType = "ENTREZID",
ont="BP",
pAdjustMethod = "BH",
qvalueCutoff = 0.05,
pvalueCutoff = 0.05,
readable = TRUE)
GO_TSA_rep_df<-data.frame(GO_TSA_rep)
#simplify to avoid redundancy
GO_TSA_rep_simp<-simplify(GO_TSA_rep,
cutoff = 0.5,
by = "p.adjust",
select_fun = min,
measure = "Wang",
semData = NULL)
#### Reference table of enriched GO terms
write.csv(GO_TSA_rep_simp, "~/Integrative-multi-omics-analyses-of-FOXG1-functions/Output/Figure 4/GO_TSA_repression_intersect_a3_reference-simp.csv")
write.csv(GO_TSA_rep, "~/Integrative-multi-omics-analyses-of-FOXG1-functions/Output/Figure 4/GO_TSA_repression_intersect_a3.csv")
### export the GO term dotplot to pdf
pdf("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Output/Figure 4/GO_TSA_repression_intersect_dotplot_final_1606.pdf",
width=4, height=2.5)
dp_rep<- dotplot(GO_TSA_rep_simp,
font.size=10,
showCategory=6,
orderBy="GeneRatio")
print(dp_rep)
dev.off()
## png
## 2
dp_rep
## png
## 2
## png
## 2
## png
## 2
## png
## 2
pdf("~/Integrative-multi-omics-analyses-of-FOXG1-functions/Output/Figure 4/venndiagram_TSA-recruitment_diff_k27ac_foxg1_increased expression_final_1706.pdf", width=4, height=)
venn_TSA_recruitment_new<- ggvenn(venn_list_recruitment, fill_color = c( "darkred", "salmon3","darkseagreen"),
stroke_size = 0.75, set_name_size = 8, text_size = 8, show_percentage = FALSE
)
## Warning in sprintf("%d", n, 100 * n/sum(n)): one argument not used by format
## '%d'
print(venn_TSA_recruitment_new)
dev.off()
## png
## 2
venn_TSA_recruitment_new
## png
## 2
sessionInfo()
## R version 4.2.0 (2022-04-22 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17763)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Germany.1252 LC_CTYPE=English_Germany.1252
## [3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Germany.1252
##
## attached base packages:
## [1] stats4 grid stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pheatmap_1.0.12 ggvenn_0.1.9 ggplot2_3.4.0
## [4] dplyr_1.0.10 org.Mm.eg.db_3.15.0 AnnotationDbi_1.58.0
## [7] IRanges_2.30.1 S4Vectors_0.34.0 Biobase_2.56.0
## [10] BiocGenerics_0.42.0 clusterProfiler_4.4.4 ggVennDiagram_1.2.2
## [13] VennDiagram_1.7.3 futile.logger_1.4.3
##
## loaded via a namespace (and not attached):
## [1] fgsea_1.22.0 colorspace_2.0-3 ggtree_3.4.4
## [4] ellipsis_0.3.2 class_7.3-20 qvalue_2.28.0
## [7] XVector_0.36.0 aplot_0.1.9 proxy_0.4-27
## [10] rstudioapi_0.14 farver_2.1.1 graphlayouts_0.8.4
## [13] ggrepel_0.9.2 bit64_4.0.5 fansi_1.0.3
## [16] scatterpie_0.1.8 codetools_0.2-18 splines_4.2.0
## [19] cachem_1.0.6 GOSemSim_2.22.0 knitr_1.41
## [22] polyclip_1.10-4 jsonlite_1.8.3 GO.db_3.15.0
## [25] png_0.1-7 ggforce_0.4.1 compiler_4.2.0
## [28] httr_1.4.4 assertthat_0.2.1 Matrix_1.5-3
## [31] fastmap_1.1.0 lazyeval_0.2.2 cli_3.4.1
## [34] tweenr_2.0.2 formatR_1.12 htmltools_0.5.3
## [37] tools_4.2.0 igraph_1.3.5 gtable_0.3.1
## [40] glue_1.6.2 GenomeInfoDbData_1.2.8 reshape2_1.4.4
## [43] DO.db_2.9 fastmatch_1.1-3 Rcpp_1.0.9
## [46] enrichplot_1.16.2 vctrs_0.5.1 Biostrings_2.64.1
## [49] ape_5.6-2 nlme_3.1-160 ggraph_2.1.0
## [52] xfun_0.35 stringr_1.4.1 lifecycle_1.0.3
## [55] DOSE_3.22.1 zlibbioc_1.42.0 MASS_7.3-58.1
## [58] scales_1.2.1 tidygraph_1.2.2 parallel_4.2.0
## [61] lambda.r_1.2.4 RColorBrewer_1.1-3 yaml_2.3.6
## [64] memoise_2.0.1 gridExtra_2.3 downloader_0.4
## [67] ggfun_0.0.9 yulab.utils_0.0.5 stringi_1.7.8
## [70] RSQLite_2.2.19 highr_0.9 e1071_1.7-12
## [73] tidytree_0.4.1 BiocParallel_1.30.4 GenomeInfoDb_1.32.4
## [76] rlang_1.0.6 pkgconfig_2.0.3 bitops_1.0-7
## [79] evaluate_0.18 lattice_0.20-45 sf_1.0-9
## [82] purrr_0.3.5 labeling_0.4.2 treeio_1.20.2
## [85] patchwork_1.1.2 shadowtext_0.1.2 bit_4.0.5
## [88] tidyselect_1.2.0 plyr_1.8.8 magrittr_2.0.3
## [91] R6_2.5.1 generics_0.1.3 DBI_1.1.3
## [94] pillar_1.8.1 withr_2.5.0 units_0.8-0
## [97] KEGGREST_1.36.3 RCurl_1.98-1.9 tibble_3.1.8
## [100] crayon_1.5.2 futile.options_1.0.1 KernSmooth_2.23-20
## [103] utf8_1.2.2 RVenn_1.1.0 rmarkdown_2.18
## [106] viridis_0.6.2 data.table_1.14.6 blob_1.2.3
## [109] classInt_0.4-8 digest_0.6.30 tidyr_1.2.1
## [112] gridGraphics_0.5-1 munsell_0.5.0 viridisLite_0.4.1
## [115] ggplotify_0.1.0