-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
98 lines (74 loc) · 2.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import data_loader
import numpy as np
def dd(val):
print(val)
quit()
def ds(someList):
for l in someList:
print(l.shape)
quit()
def sig(z):
return 1 / (1 + np.exp(-z))
def sig_prime(z):
a = sig(z)
return a * (1 - a)
def softmax(z):
total = np.sum(np.exp(z))
return [np.exp(zk) / total for zk in z]
#training_data , validation_data , test_data = load_data_wrapper()
training_data, test_data = data_loader.load_data_wrapper()
inputSize = len(training_data[0][0])
layerSizes = [inputSize, 15, 10];
learningRate = 0.2
batch_size = 30
epochs = 40
biases = [np.random.normal(0.0, 1.0, (row, 1)) for row in layerSizes[1:]]
#dd(biases)
fullLayer = [(inputSize, 15), (15, 10)]
weights = [np.random.normal(0.0, 1.0/np.sqrt(col), (row, col)) for col, row in fullLayer]
trainingBatches = []
for i in range(0, inputSize - batch_size, batch_size):
trainingBatches.append( training_data[i: i + batch_size] )
for i in range(epochs):
for batches in trainingBatches:
gradient_w = [np.zeros((row, col)) for col, row in fullLayer];
gradient_b = [np.zeros((row, 1)) for row in layerSizes[1:]];
for a, y in batches:
#feedforward
zetas = []
activations = [a]
for b, w in zip(biases, weights):
z = np.dot(w, a) - b
zetas.append(z)
a = sig(z)
activations.append(a)
#output layer error and cost
a = softmax(z)
err = a - y
#backpropagation
errors = [err]
for w, z in zip(reversed(weights), reversed(zetas[:-1])):
err = np.dot(np.transpose(w), err) * sig_prime(z)
errors.append(err)
errors.reverse()
gradient_b = [b + e for b, e in zip(gradient_b, errors)]
j = 0
for a, err in zip(activations, errors):
gradient_w[j] = gradient_w[j] + (np.dot( err, np.transpose(a) ))
j = j + 1
#gradient descend
avg = 1 / len(batches)
for l in range(0, len(layerSizes) - 1):
weights[l] = weights[l] - learningRate * gradient_w[l] * avg
for l in range(0, len(layerSizes) - 1):
biases[l] = biases[l] - learningRate * gradient_b[l] * avg
correct = 0;
for a, n in test_data:
for b, w in zip(biases, weights):
z = np.dot(w, a) - b
a = sig(z)
a = softmax(z)
if(a.index(max(a)) == n):
correct = correct + 1;
accuracy = round(correct / len(test_data), 2)
print("accuracy: " + str(accuracy))