-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathsegnext.tiny.512x512.ade.160k.py
46 lines (44 loc) · 1.7 KB
/
segnext.tiny.512x512.ade.160k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
_base_ = [
'../../_base_/models/mscan.py',
'../../_base_/datasets/ade20k_repeat.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_160k_adamw.py'
]
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
ham_norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
find_unused_parameters = True
model = dict(
type='EncoderDecoder',
backbone=dict(
init_cfg=dict(type='Pretrained', checkpoint='pretrained/mscan_t.pth')),
decode_head=dict(
type='LightHamHead',
in_channels=[64, 160, 256],
in_index=[1, 2, 3],
channels=256,
ham_channels=256,
ham_kwargs=dict(MD_R=16),
dropout_ratio=0.1,
num_classes=150,
norm_cfg=ham_norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))
data = dict(samples_per_gpu=8)
evaluation = dict(interval=8000, metric='mIoU')
checkpoint_config = dict(by_epoch=False, interval=8000)
# optimizer
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01,
paramwise_cfg=dict(custom_keys={'pos_block': dict(decay_mult=0.),
'norm': dict(decay_mult=0.),
'head': dict(lr_mult=10.)
}))
lr_config = dict(_delete_=True, policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)