
Classification key concepts

Classifiers: Naive Bayes, perceptron, P-A, logistic regression

Linear decision rule

ŷ = arg max
y∈Y

θTf(x, y)

How to set θ?

Criteria: joint likelihood, 0/1 loss, hinge loss, conditional likelihood
Optimization: online vs batch
Smoothing, regularization, averaging

What is in f(x, y)?

Bag-of-words features
N-grams, suffixes, prefixes, etc...

How to find the best y? What if Y is too big to search over?

Classification key concepts

Classifiers: Naive Bayes, perceptron, P-A, logistic regression

Linear decision rule

ŷ = arg max
y∈Y

θTf(x, y)

How to set θ?

Criteria: joint likelihood, 0/1 loss, hinge loss, conditional likelihood
Optimization: online vs batch
Smoothing, regularization, averaging

What is in f(x, y)?

Bag-of-words features
N-grams, suffixes, prefixes, etc...

How to find the best y? What if Y is too big to search over?

Classification key concepts

Classifiers: Naive Bayes, perceptron, P-A, logistic regression

Linear decision rule

ŷ = arg max
y∈Y

θTf(x, y)

How to set θ?

Criteria: joint likelihood, 0/1 loss, hinge loss, conditional likelihood
Optimization: online vs batch
Smoothing, regularization, averaging

What is in f(x, y)?

Bag-of-words features
N-grams, suffixes, prefixes, etc...

How to find the best y? What if Y is too big to search over?

Classification key concepts

Classifiers: Naive Bayes, perceptron, P-A, logistic regression

Linear decision rule

ŷ = arg max
y∈Y

θTf(x, y)

How to set θ?

Criteria: joint likelihood, 0/1 loss, hinge loss, conditional likelihood
Optimization: online vs batch
Smoothing, regularization, averaging

What is in f(x, y)?

Bag-of-words features
N-grams, suffixes, prefixes, etc...

How to find the best y? What if Y is too big to search over?

Classification key concepts

Classifiers: Naive Bayes, perceptron, P-A, logistic regression

Linear decision rule

ŷ = arg max
y∈Y

θTf(x, y)

How to set θ?

Criteria: joint likelihood, 0/1 loss, hinge loss, conditional likelihood
Optimization: online vs batch
Smoothing, regularization, averaging

What is in f(x, y)?

Bag-of-words features
N-grams, suffixes, prefixes, etc...

How to find the best y? What if Y is too big to search over?

Classifier comparison

Naive Bayes: easy to implement, fast to learn, probabilistic,
restrictive independence assumption

Perceptron: easy to implement, pretty fast to learn, not probabilistic,
thrashing when not instances are not linearly separable

Passive-aggressive: ibid, better behavior when data is not separable

Logistic regression: harder to implement, can be slower to learn,
probabilistic and discriminative, easy to regularize

What if...

We assume training data {xi , yi}
What if we don’t have the labels?
Can we learn anything from unlabeled data?

What if we have just a few labels?
Can unlabeled data help?

Motivation: WSD

Semcor has 60 labeled instances of the word concern as a noun.

A context-based classifier would need thousands of bag-of-words
features.

But suppose we identified two word groups:

services, produces, banking, pharmaceutical, energy electronics
said, dilemma, over, in, with, had

Motivation: WSD

Semcor has 60 labeled instances of the word concern as a noun.

A context-based classifier would need thousands of bag-of-words
features.

But suppose we identified two word groups:

services, produces, banking, pharmaceutical, energy electronics
said, dilemma, over, in, with, had

Motivation

Nigam et al.(1999):

... after a person read and labeled 1000 articles (from UseNet), a
learned classifier achieved a precision of about 50% when making
predictions for only the 10% of documents about which it was
most confident. Most users of a practical system, however, would
not have the patience to label a thousand articles... one would
obviously prefer algorithms that can provide accurate
classifications after hand-labeling only a few dozen articles.

Learning from unlabeled examples?

Unlabeled data can improve learning by giving a better idea of the
underlying shape of the data.

Nigam et al. augment Naive Bayes to include both labeled and
unlabeled examples.

For the unlabeled examples, they maintain a distribution q(yi).
For the labeled example, yi is known.
The algorithm alternates between updating µ,φ and q(yi) for the
unlabeled examples

Learning from unlabeled examples?

Unlabeled data can improve learning by giving a better idea of the
underlying shape of the data.

Nigam et al. augment Naive Bayes to include both labeled and
unlabeled examples.

For the unlabeled examples, they maintain a distribution q(yi).
For the labeled example, yi is known.
The algorithm alternates between updating µ,φ and q(yi) for the
unlabeled examples

Accuracy on 20 Newsgroups

Accuracy on WebKB

Downweighting unlabeled data

For unlabeled documents, we’re just guessing the label.
Maybe they should count less.

log P(x(`), x(u), y(`)) = log P(x(`), y(`)) + λ
∑
y

log P(x(u), y) (1)

When λ = 0, it’s supervised classification.

When λ = 1, it’s standard EM.

Accuracy on WebKB with downweighting

Multiple components per class

Naive Bayes assumes one “component” φ per class.

Suppose we are classifying “baseball” vs “other.”

There are many ways to not write about baseball.
Why not have many possible components?

Multiple components per class

With EM, we can treat each class as a mixture of components.

Assume there are k components per class y ∈ Y
Assume a distribution P(c |y), where P(c |y) = 0 for components c
not associated with the class y .

P(xi , yi) =
∑
c

P(xi , yi , c)

=
∑
c

P(xi |c)P(c |yi)P(yi)

Multiple components per class

The component for each document, ci , is called a latent variable.

We perform inference over latent variables, computing the
distribution qCi

(c) = P(c |xi , yi).

This is part of the E-step in EM.

The ability to incorporate latent variables is a major advantage of
probabilistic models.

Multiple components per class

This can help, but it is sensitive to choosing the right number of
components per class.

With too many components, we will overfit — “memorizing” the
training data.

Summary

As a probabilistic model, Naive Bayes can go beyond just supervised
classification.

Expectation maximization allows us to handle missing data
In clustering and semi-supervised learning,
the label yi is missing.
In multi-component modeling, the component ci is missing.

There are lots of other ways to do semi-supervised learning.
We’ll talk about them towards the end of the course.

