
Administrative corrections

The prerequisite is apparently CS 1331.

This will be changed to CS 3510, and my recommendation is to wait
until you’ve had this class.

Informally: probability, algorithms, programming

If you don’t have sufficient preparation, there’s only so much we can
do to help you...



Sentiment analysis

Pang and Lee define sentiment analysis broadly:

Making a decision for a particular document

“is it positive or negative?”

(polarity classification)

“how positive is it?”

Ordering a set of of texts

“rank these reviews by how positive they are”

Giving a single label to an entire collection

“where on the scale between liberal and conservative do the writings of
this author lie?”

Categorizing the relationship between two enti- ties based on textual
evidence

“does A approve of Bs actions?”
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Sentiment analysis



Spam detection



Language classification



The bag-of-words representation

w1 ={great, sunset, tonight, . . .} w2 ={ugly, skies, buford, . . .}
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Feature functions

Suppose y ∈ Y = {pos, neg

, neut

}. Then,

f(x, y = pos) =[xT, 0T

, 0T, 1

]T

f(x, y = neg) =[0T, xT

, 0T, 1

]T

f(x, y = neut) =[0T, 0T, xT

, 1

]T

The feature vector is composed of individual feature functions, e.g.:

f176(x, y) ..=x176 × δ(y = pos)

=δ(great ∈ w ∧ y = pos)

f177(x, y) ..=x177 × δ(y = pos)

f10176(x, y) ..=x176 × δ(y = neg) . . .

We usually add an “offset” feature at the end of each vector.
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Prediction by addition

We can then define weights for each feature:

θ =

{〈great, pos〉 = 1, 〈great, neg〉 = −1, 〈great, neut〉 = 0,

〈ugly, pos〉 = −1, 〈ugly, neg〉 = 1, 〈ugly, neut〉 = 0,

〈buford, pos〉 = 0, 〈buford, neg〉 = 0, 〈buford, neut〉 = 0,

. . .}

We can arrange these weights into a vector.

The score for any instance and label is equal to the sum of the
weights for all features in the instance:

ψy ,x =
∑
n

θnfn(x, y)

=θTf(x, y)

ŷ =arg max
y

θTf(x, y)
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Where do we get the weights?

Set them by hand

Probability

Discriminative learning

...
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