
Linear Models for Statistical Natural Language
Processing

Jacob Eisenstein

September 4, 2014

Chapter 1

Introduction

This is a collection of notes that I use for teaching Georgia Tech Computer Science
4650 and 7650, “Natural Language.” The notes focus on what I view as a core
subset of the field of natural language processing, unified by the concept of linear
models. This includes approaches to document classification, word sense disam-
biguation, sequence labeling (part-of-speech tagging and named entity recogni-
tion), parsing, coreference resolution, relation extraction, discourse analysis, and,
to a limited degree, language modeling and machine translation. The theme was
inspired by Fernando Pereira’s EMNLP 2008 keynote, “Are linear models right for
language.”1 The notes are heavily influenced by several other good resources (e.g.,
Manning and Schütze, 1999; Jurafsky and Martin, 2009; Figueiredo et al., 2013;
Collins, 2013), but for various reasons I wanted to create something of my own.

1You can see a version of this talk — not the one I saw — online at vimeo.com/30676245

1

Chapter 2

Notation

wn word token at position n
xi a vector of feature counts for instance i, often word counts
N number of training instances
V number of words in vocabulary
θ a vector of weights
yi the label for instance i
y vector of labels across all instances
Y set of all possible labels
K number of possible labels K = #|Y|
f(xi, yi) feature vector for instance i with label yi
P (A) probability function of event A
pB(b) the marginal probability of random variable B taking value b

3

Chapter 3

Linear classification and features

Suppose you want to build a spam detector. Spam vs. Ham. How would you do
it, using only the text in the email?

One solution is to represent document i as a column vector of word counts:
xi = [0 1 1 0 0 2 0 1 13 0 . . .]T, where xi,j is the count of word j in document i.
Suppose the size of the vocabulary is V , so that the length of xi is also V .

We’ve thrown out grammar, sentence boundaries, paragraphs — everything
but the words! But this could still work. If you see the word free, is it spam or
ham? How about c1al1s? How about Bayesian? One approach would be to define
a “spamminess” score for every word in the dictionary, and then just add them
up. This is also a commonly-used approach to sentiment analysis, where each
word is scored as one of {1, 0,−1}, with 1 indicating positive sentiment and −1
indicating negative sentiment.

These scores are called weights, written θ, and we’ll spend a lot of time later
talking about where they come from. But for now, let’s generalize: suppose we
want to build a multi-way classifier to distinguish stories about sports, celebrities,
music, and business. Each label is an element yi in a set of K possible labels Y .
Then for any pair 〈xi, yi〉, we can define a feature vector f(xi, yi), such that:

f(x, y = 0) = [xT
i 0

T
V (K−1)]

T (3.1)

f(x, y = 1) = [0T
V x

T
i 0

T
V (K−2)]

T (3.2)

f(x, y = 2) = [0T
2V x

T
i 0

T
V (K−3)]

T (3.3)

. . . (3.4)

f(x, K) = [0T
V (K−1) x

T
i]

T, (3.5)

where 0V K is a column vector of V K zeros. Often we’ll add an offset feature at

5

6 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

the end of x, which is always 1; we then have to also add an extra zero to each of
the zero vectors. This gives the entire feature vector f(x, y) a length of (V + 1)K.

Now, given a vector of weights, θ ∈ R(V+1)K , we can compute the inner prod-
uct θTf(x, y). Then for any document xi, we can predict a label ŷ as

ŷ = arg max
y
θTf(xi, y) (3.6)

We could just set the weights by hand. If we wanted to distinguish, say, En-
glish from Spanish, we could just use English and Spanish dictionaries, and set
each weight to 1. For example,

θenglish,bicycle =1 θspanish,bicycle =0

θenglish,bicicleta =0 θspanish,bicicleta =1

θenglish,con =1 θspanish,con =1

θenglish,ordinateur =0 θspanish,ordinateur =0

Similarly, if we want to distinguish positive and negative sentiment, we could
use positive and negative sentiment lexicons, which are defined by expert psychol-
ogists (Tausczik and Pennebaker, 2010). You’ll try this in Project 1.

But it’s usually not easy to set the weights by hand. Instead, we will learn
them from data. For example, suppose that an email user has manually labeled
thousands of messages as “spam” or “not spam”; or a newspaper may label its
own articles as “business” or “fashion.” Such instance labels are a typical form of
labeled data that we will encounter in NLP. In supervised machine learning, we
use instance labels to automatically set the weights for a classifier. An important
tool for this is probability.

3.1 Review of basic probability
This section is inspired/borrowed from Manning and Schütze (1999).

• Formally: When we write P ()̇, this denotes a function P : F → [0, 1] from
an event space F to a probability. A probability is a real number between
zero and one, with zero representing impossibility and one representing cer-
tainty.

• The probabilities of disjoint event sets are additive: Ai ∩ Aj = ∅ ⇒ P (Ai ∪
Aj) = P (Ai)+P (Aj). This is a restatement of the Third Axiom of probability.

(c) Jacob Eisenstein 2014-2015. Work in progress.

3.1. REVIEW OF BASIC PROBABILITY 7

• For example, you might ask what is the probability of two heads on three
coin flips. There are eight possible series of three flips HHH,HHT, . . ., and
each is an equally likely event. Of these events, three meet the criterion,
HHT , HTH , THH . So the probability is 3

8
.

• More generally, P (Ai∪Aj) = P (Ai)+P (Aj)−P (Ai∩Aj). This can be derived
from the third axiom.

P (Ai ∪ Aj) =P (Ai) + P (Aj − (Ai ∩ Aj)) (3.7)
P (Aj) =P (Aj − (Ai ∩ Aj)) + P (Ai ∩ Aj) (3.8)

P (Aj − (Ai ∩ Aj)) =P (Aj)− P (Ai ∩ Aj) (3.9)
P (Ai ∪ Aj) =P (Ai) + P (Aj)− P (Ai ∩ Aj) (3.10)

• If the probability P (A ∩ B) = P (A)P (B), then the events A and B are inde-
pendent, written A ⊥ B.

Conditional probability and Bayes’ Rule

A conditional probability is an expression like P (A | B), where we are interested
in the probability of A conditioned on B happening.

• Conditional probability: P (A | B) = P (A ∩B)/P (B)

• If P (A∩B | C) = P (A | C)P (B | C), then the events A and B are condition-
ally independent, written A ⊥ B | C.

• Chain rule: P (A ∩ B) = P (A | B)P (B), which is just a rearrangement of
terms.

• We can apply the chain rule multiple times:

P (A ∩B ∩ C) =P (A | B ∩ C)P (B ∩ C)

=P (A | B ∩ C)P (B | C)P (C)

We’ll do this a lot later in the course.

• Bayes’ rule follows from the Chain rule: P (A | B) = P (A∩B)/P (B) = P (B |
A)P (A)/P (B)

(c) Jacob Eisenstein 2014-2015. Work in progress.

8 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

Often we want the maximum a posteriori (MAP) estimate

B̂ = arg max
B

P (B | A)

= arg max
B

P (A | B)P (B)/P (A)

∝ arg max
B

P (A | B)P (B)

• We don’t need to normalize the probability because P (A) is the same for all
values of B.

• If we do need to compute the conditional P (A | B), we can compute P (A)
by summing over P (A ∩ B) + P (A ∩ B), where B ∩ B = ∅ and B ∪ B = Ω,
the entire sample space (such that P (Ω) = 1).

• More generally, if
⋃
iBi = Ω and ∀i,j, Bi ∩ Bj = ∅, then P (A) =

∑
i P (A |

Bi)P (Bi).

Example Manning and Schütze (1999) have a nice example of Bayes Rule (Bayes
Law) in a linguistic setting.

• Suppose one is interested in a rare syntactic construction, perhaps parasitic
gaps, which occurs on average once in 100,000 sentences.

– (An example of a sentence with a parasitic gap is Which class did you
attend without registering for ? -JE)

• Lana Linguist has developed a complicated pattern matcher that attempts
to identify sentences with parasitic gaps. Its pretty good, but it’s not perfect:

– If a sentence has a parasitic gap, it will say so with probability 0.95 (this
is the recall -JE).

– If it doesn’t, it will wrongly say it does with probability 0.005 (this is
the false positive rate, the additive inverse of precision -JE).

• Suppose the test says that a sentence contains a parasitic gap. What is the
probability that this is true?

• (This example is usually framed in terms of tests for rare diseases. -JE)

(c) Jacob Eisenstein 2014-2015. Work in progress.

3.1. REVIEW OF BASIC PROBABILITY 9

Solution: Let G be the event of a sentence having a parasitic gap, and T be the
event of the test being positive.

P (G | T) =
P (G | T)P (T)

P (G | T)P (T) + P (G | T)P (T)
(3.11)

=
0.95× 0.00001

0.95× 0.00001 + 0.005× 0.99999
≈ 0.002 (3.12)

Random variables

A random variable takes on a specific value in Rn, typically with n = 1, but not
always. Discrete random variables can take values only in some countable subset
of R.

• Recall the coin flip example. The number of heads, H , can be viewed as a
discrete random variable, H ∈ 0, 1, 2, 3.

• The probability mass associated with each number is {1
8
, 3
8
, 3
8
, 1
8
}.

• This set of numbers represents the probability distribution over H , written
P (H = h) = p(h).

• To indicate that the RV H is distributed as p(h), we write H ∼ p(h).

• The function p(h) is called a probability mass function (pmf) if h is discrete,
and a probability density function (pdf) if h is continuous.

• If we have more than one variable, we can write a joint probability p(a, b) =
P (A = a,B = b).

• We can write a marginal probability pA(a) =
∑

b p(a, b).

• Random variables are independent iff pA,B(a, b) = pA(a)pB(b).

• We can write a conditional probability as p(a | b) = p(a,b)
pB(b)

.

(c) Jacob Eisenstein 2014-2015. Work in progress.

10 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

Expectations

Sometimes we want the expectation of a function, such asE[g(x)] =
∑

x∈X g(x)p(x).
Expectations are easiest to think about in terms of probability distributions

over discrete events:

• If it is sunny, Marcia will eat three ice creams.

• If it is rainy, she will eat only one ice cream.

• There’s a 80% chance it will be sunny.

• The expected number of ice creams she will eat is 0.8× 3 + 0.2× 1 = 2.6.

If the random variable X is continuous, the sum becomes an integral:

E[g(x)] =

∫
X
g(x)p(x)dx (3.13)

For example, a fast food restaurant in Quebec gives a 1% discount on french fries
for every degree below zero. Assuming they used a thermometer with infinite
precision, the expected price would be an integral over all possible temperatures.

3.2 Naı̈ve Bayes

Back to classification! A Naı̈ve Bayes classifier chooses the weights θ to maximize
the joint probability of a labeled dataset, p(x1:N ,y1:N), where 〈xi, yi〉 is a labeled
instance.

We first need to define the probability p(x, y). We’ll do that through a “genera-
tive model,” which describes a hypothesized stochastic process that has generated
the observed data.1

• For each document i,

– draw the label yi ∼ Categorical(µ)

– draw the vector of counts xi ∼Multinomial(φyi),

1We’ll see a lot of different generative models in this course. They are a helpful tool because
they clearly and explicitly define the assumptions that underly the form of the probability distri-
bution.

(c) Jacob Eisenstein 2014-2015. Work in progress.

3.2. NAÏVE BAYES 11

The first thing this generative model tells us is that we can treat each document
independently: the probability of the whole dataset is equal to the product of
the probabilities of each individual document. The observed word counts and
document labels are independent and identically distributed (IID).

p(x,y;µ, φ) =
∏
i

p(xi, yi;µ, φ) (3.14)

This means that the words in each document are conditionally independent given
the parameters µ and φ.

When we write yi ∼ Categorical(µ), that means yi is a stochastic draw from a
categorical distribution with parameter µ. A categorical distribution is just like a
weighted die: pcat(y;µ) = µy, where µy is the probability of the outcome Y = y.
We require

∑
y µy = 1 and ∀y, µy ≥ 0.

A multinomial distribution is only slightly more complex:

pmult(x;φ) =

(∑
j xj

)
!∏

j xj!

∏
j

φ
xj
j (3.15)

We again require that
∑

j φj = 1 and ∀j, φj ≥ 0. The first part of the equation
doesn’t depend on φ, and can usually be ignored. Can you see why we need the
first part at all?2

We can write p(xi | yi;φ) to indicate the conditional probability of word counts
xi given label yi, with parameter φ, which is equal to pmult(xi;φyi).

By specifying the multinomial distribution, we are working with multinomial
naı̈ve Bayes (MNB). Why “naı̈ve”? Because the multinomial distribution treats
each word token independently: the probability mass function factorizes across
the counts.3 We’ll see this more clearly later, when we show how MNB is an
example of linear classification.

Another version of Nav̈e Bayes

Consider a slight modification to the generative story of NB:
2Technically, a multinomial distribution requires a second parameter, the total number of

counts (the number of words in the document). Even more technically, that number should be
treated as a random variable, and drawn from some other distribution. But none of that matters
for classification.

3You can plug in any probability distribution to the generative story and it will still be naı̈ve
Bayes, as long as you are making the “naı̈ve” assumption that your features are generated inde-
pendently.

(c) Jacob Eisenstein 2014-2015. Work in progress.

12 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

• For each document i

– Draw the label yi ∼ Categorical(µ)

– For each word n ≤ Di

∗ Draw the word wi,n ∼ Categorical(φyi)

This is not quite the same model as multinomial Naive Bayes (MNB): it’s a
product of categorical distributions over words, instead of a multinomial distri-
bution over word counts. This means we would generate the words in order, like
pW (multinomial)pW (Naive)pW (Bayes). Formally, this is a model for the joint prob-
ability p(w, y), not p(x, y).

However, as a classifier, it is identical to MNB. The final probabilities are re-
duced by a factor corresponding to the normalization term in the multinomial,
(
∑

j xj)!∏
j xj !

. This means that the resulting probabilities for a given x are different.
However, none of this has anything to do with the label y or the parameters φ.
The ratio of probabilities between any two labels y1 and y2 will be identical, as
will the maximum likelihood estimates for the parameters µ and φ (defined later).

Prediction

The Naive Bayes prediction rule is to choose the label y which maximizes p(x, y;φ, µ):

ŷ =arg max
y

p(x, y;µ, φ)

=arg max
y

p(x | y;φ)p(y;µ)

=arg max
y

log p(x | y;φ) + log p(y;µ)

Converting to logarithms makes the notation easier. It doesn’t change the pre-
diction rule because the log function is monotonically increasing.

(c) Jacob Eisenstein 2014-2015. Work in progress.

3.2. NAÏVE BAYES 13

Now we can plug in the probability distributions from the generative story.

log p(x, y;µ, φ) =arg max
y

log p(x | y;φ) + log p(y;µ)

= log

(∑

j xj

)
!∏

j xj!

∏
j

φ
xj
y,j

+ log µy

= log

(∑
j xj

)
!∏

j xj!
+
∑
j

xj log φy,j + log µy

∝
∑
j

xj log φy,j + log µy

=θTf(x, y),

where

θ = [θ(1)
T
,θ(2)

T
, . . . ,θ(K)T

]T

θ(y) = [log φy,1 log φy,2 . . . log φy,M log µy]
T

and f(x, y) is a vector of word counts and an offset, padded by zeros for the labels
not equal to y (see equations 3.1-3.5). This ensures that the inner product θTf(x, y)

only activates the features in θ(y), which are what we need to compute the joint
log-probability log p(x, y) for each y.

Estimation

The parameters of a multinomial distribution have a simple interpretation: they’re
the expected frequency for each word. Based on this interpretation, it’s tempting
to set the parameters empirically, as

φy,j =

∑
i:Yi=y

xi,j∑
j′
∑

i:Yi=y
xi,j′

=
count(y, j)∑
j′ count(y, j′)

(3.16)

In NLP this is called a relative frequency estimator. It can be justified more rigor-
ously as a maximum likelihood estimate.

As in prediction, we want to maximize the joint likelihood of the data,

L =
∑
i

log pmult(xi;φyi) + log pcat(yi;µ) (3.17)

(c) Jacob Eisenstein 2014-2015. Work in progress.

14 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

Since p(y) is unrelated to φ, we can forget about it for now. But before we can just
optimize L, we have to deal with a constraint:∑

j

φy,j = 1 (3.18)

We’ll do this by adding a Lagrange multiplier. Here’s the resulting Lagrangian:

`[φy] =
∑
i:Yi=y

∑
j

xij log φy,j + λ(
∑
j

φy,j − 1) (3.19)

We solve by setting ∂`
φj

= 0.

0 =
∑
i:Yi=y

xi,j/φy,j − λ

λφy,j =
∑
i:Yi=y

xi,j

φy,j ∝
∑
i:Yi=y

xi,j =
∑
i

δ(Yi = y)xi,j

=

∑
i:Yi=y

xi,j∑
j′
∑

i:Yi=y
xi,j′

Similarly, µy ∝
∑

i δ(Yi = y), where δ(Yi = y) = 1 if Yi = y and 0 otherwise.

Smoothing and MAP estimation

If data is sparse, you can end up with values of φ = 0, allowing a single feature
to completely veto a label. This is undesirable, because it imposes high variance:
depending on what data happens to be in the training set, we could get vastly
different classification rules.

One solution is Laplace smoothing: adding “pseudo-counts” of α to each esti-
mate, and then normalize.

φy,j =
α +

∑
i:Yi=y

xi,j∑
j′ α +

∑
i:Yi=y

xi,j′
=

α + count(i, j)
V α +

∑
j′ count(i, j′)

(3.20)

Laplace smoothing has a nice Bayesian justification, in which we extend the
generative story to include φ as a random variable (rather than as a parameter).
The resulting estimate is called maximum a posteriori, or MAP.

(c) Jacob Eisenstein 2014-2015. Work in progress.

3.2. NAÏVE BAYES 15

Smoothing reduces variance, but it takes us away from the maximum-likelihood
estimate: it imposes a bias (towards uniform probabilities). Machine learning the-
ory shows that errors on held out data result from the sum of bias and variance.
Techniques for reducing variance typically increase the bias, so there is a bias-
variance tradeoff.

• Unbiased classifiers overfit the training data, yielding poor performance on
unseen data.

• But if we set a very large smoothing value, we can underfit instead. In the
limit of α → ∞, we have zero variance: it is the same classifier no matter
what data we see! But the bias of such a classifier will be high.

• Navigating this tradeoff is hard. But in general, as you have more data,
variance is less of a problem, so you just go for low bias.

Training, testing, and tuning (development) sets

We’ll soon talk about more learning algorithms, but whichever one we apply, we
will want to report its accuracy. Really, this is an educated guess about how well
the algorithm will do on new data in the future.

To do this, we need to hold out a separate “test set” from the data that we use
for estimation (i.e., training, learning). Otherwise, if we measure accuracy on the
same data that is used for estimation, we will badly overestimate the accuracy
we’re likely to get on new data. See http://xkcd.com/1122/ for a cartoon
related to this idea.

Many learning algorithms also have “tuning” parameters:

• the smoothing pseudo-counts α in Naive Bayes

• the regularization λ in logistic regression

• the slack weight C in the support-vector machine

All of these tuning parameters really do the same thing: they navigate the bias-
variance tradeoff. Where is the best position on this tradeoff curve? It’s hard to
tell in advance. Sometimes it is tempting to see which tuning parameter gives the
best performance on the test set, and then report that performance. Resist this
temptation! It will also lead to overestimating accuracy on truly unseen future

(c) Jacob Eisenstein 2014-2015. Work in progress.

16 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

data. For that reason, this is a sure way to get your research paper rejected. In-
stead, you should split off a piece of your training data, called a “development
set” (or “tuning set”).

Sometimes, people average across multiple test sets and/or multiple develop-
ment sets. One way to do this is to divide your data into “folds,” and allow each
fold to be the development set one time. This is called K-fold cross-validation. In
the extreme, each fold is a single data point. This is called leave-one-out.

The Naivety of Naive Bayes

Naive Bayes is very simple to work with. Estimation and prediction can done in
closed form, and the nice probabilistic interpretation makes it relatively easy to
extend the model in various ways.

But Naive Bayes makes assumptions which seriously limit its accuracy, espe-
cially in NLP.

• The multinomial distribution assumes that each word is generated indepen-
dently of all the others (conditioned on the parameter φy). Formally, we
assume conditional independence:

p(naı̈ve,Bayes;φ) = p(naı̈ve;φ)p(Bayes;φ). (3.21)

• But this is clearly wrong, because words “travel together.” Question for you,
is it:

p(naı̈ve Bayes) > p(naı̈ve)p(Bayes) (3.22)

or...
p(naı̈ve Bayes) < p(naı̈ve)p(Bayes) (3.23)

Apply the chain rule!

Traffic lights Dan Klein makes this point with an example about traffic lights. In
his hometown of Pittsburgh, there is a 1/7 chance that the lights will be broken,
and both lights will be red. There is a 3/7 chance that the lights will work, and
the north-south lights will be green; there is a 3/7 chance that the lights work and
the east-west lights are green.

The prior probability that the lights are broken is 1/7. If they are broken, the
conditional likelihood of each light being red is 1. The prior for them not being
broken is 6/7. If they are not broken, the conditional likelihood of each being light
being red is 1/2.

(c) Jacob Eisenstein 2014-2015. Work in progress.

3.3. RECAP 17

Now, suppose you see that both lights are red. According to Naive Bayes, the
probability that the lights are broken is 1/7× 1× 1 = 1/7 = 4/28. The probability
that the lights are not broken is 6/7 × 1/2 × 1/2 = 6/28. So according to naive
Bayes, there is a 60% chance that the lights are not broken!

What went wrong? We have made an independence assumption to factor
the probability P (R,R | not-broken) = Pnorth-south(R | not-broken)Peast-west(R |
not-broken). But this independence assumption is clearly incorrect, because P (R,R |
not-broken) = 0.

Less Naive Bayes? Of course we could decide not to make the naive Bayes as-
sumption, and model P (R,R) explicitly. But this idea does not scale when the
feature space is large (as it often is in NLP). The number of possible feature con-
figurations grows exponentially, so our ability to estimate accurate parameters
will suffer from high variance. With an infinite amount of data, we’d be fine (in
theory, maybe not in practice); but we never have that. Naive Bayes accepts some
bias (because of the incorrect modeling assumption) in exchange for lower vari-
ance.

3.3 Recap
• Bag-of-words representation f(x, y)

• Classification as a dot-product θTf(x, y)

• Naive Bayes

– Define p(x,y) via a generative model

– Prediction: ŷ = arg maxy p(xi, y)

– Learning:

θ =arg max
θ

p(x,y;θ)

p(x,y;θ) =
∏
i

p(xi, yi;θ) =
∏
i

p(xi|yi)p(yi)

φy,j =

∑
i:Yi=y

xij∑
i:Yi=y

∑
j xij

µy =
count(Y = y)

N

(c) Jacob Eisenstein 2014-2015. Work in progress.

18 CHAPTER 3. LINEAR CLASSIFICATION AND FEATURES

This gives the maximum-likelihood estimator (MLE; same as relative
frequency estimator)

• Bias-variance tradeoff: MLE is high-variance, so add smoothing pseudo
counts α. This reduces variance but adds bias.

(c) Jacob Eisenstein 2014-2015. Work in progress.

Chapter 4

Sentiment analysis

Todo: add notes about sentiment analysis here

19

Chapter 5

Discriminative learning

5.1 Features
Naive Bayes is a simple classifier, where the weights are learned based on the
joint probability of labels and words. It includes an independence assumption: all
features are mutually independent, conditioned on the label.

• We have defined a feature function f(x, y), which corresponds to “bag-of-
words” features. While these features do violate the independence assump-
tion, the violation is relatively mild.

• We may be interested in other features, which violate independence more
severely. Can you think of any?

– Prefixes, e.g. anti-, im-, un-
– Punctuation and capitalization
– Bigrams, e.g. not good, not bad, least terrible, ...

Rich feature sets generally cannot be combined with Naive Bayes because the
distortions resulting from violations of the independence assumption overwhelm
the additional power of better features.

p(not bad food|y) ≈p(not|y)p(bad|y)p(food|y) (5.1)
p(not bad food|y) 6≈p(not|y)p(bad|y)p(not bad|y)p(food|y) (5.2)

To use these features, we will need learning algorithms that do not rely on an
independence assumption.

21

22 CHAPTER 5. DISCRIMINATIVE LEARNING

5.2 Perceptron
In NB, the weights can be interpreted as parameters of a probabilistic model. But
this model requires an independence assumption that usually does not hold, and
limits our choice of features.

Why not forget about probability and learn the weights in an error-driven
way?

• Until converged, at each iteration t

– Select an instance i

– Let ŷ = arg maxy θ
T
t f(xi, y)

– If ŷ = yi, do nothing

– If ŷ 6= yi, set θt+1 ← θt + f(xi, yi)− f(xi, ŷ)

Basically we are saying: if you make a mistake, increase the weights for fea-
tures which are active with the correct label yi, and decrease the weights for fea-
tures which are active with the guessed label ŷ.

This seems like a cheap heuristic, right? Will it really work? In fact, there is
some nice theory for the perceptron.

• If there is a set of weights that correctly separates your data, then your data
is separable.

• Formally, your data is (linearly) separable if there exists a set of weights θ
such that

∀xi, yi, θTf(xi, yi) > max
y′ 6=yi

θTf(xi, y
′) (5.3)

• If your data is linearly separable, it can be proven that the perceptron algo-
rithm will eventually find a separator.

• What if your data is not separable?

– the number of errors is bounded...

– but the algorithm will thrash. That is, the weights will cycle between
different values, and will never converge.

The perceptron is an online learning algorithm.

• This means that it adjusts the weights after every example.

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.3. LOSS FUNCTIONS AND LARGE-MARGIN CLASSIFICATION 23

• This is different from Naı̈ve Bayes, which computes corpus statistics and
then sets the weights in a single operation. This is a batch learning algo-
rithm.

• Other algorithms are iterative, in that they perform multiple updates to the
weights, but are also batch, in that they have to use all the training data to
compute the update. We’ll mention two of those algorithms later.

Voted (averaged) perceptron

One solution to thrashing is to average the weights across all iterations:

θ =
1

T

T∑
t

θt

y =arg max
y
θ

T
f(x, y)

There is some analysis showing that voting can improve generalization (Fre-
und and Schapire, 1999; Collins, 2002). However, this rule as described here is not
practical. Can you see why not, and how to fix it?

5.3 Loss functions and large-margin classification
Naive Bayes chooses the weights θ by maximizing the likelihood p(x,y). This can
be seen, equivalently, as maximizing the log-likelihood (due to the monotonicity
of the log function), and as minimizing the negative log-likelihood. This negative
log-likelihood can therefore be viewed as a loss function, which is minimized:

log p(x,y;θ) =
∑
i

log p(xi, yi;θ) (5.4)

`NB(θ;xi, yi) =− log p(xi, yi;θ) (5.5)

θ̂ =arg min
θ

∑
i

`NB(θ,xi, yi) (5.6)

This may seem confusing and backwards, but loss functions provide a very
general framework in which to compare many approaches to machine learning.
For example, even though the perceptron is not a probabilistic model, it is also
trying to minimize a loss function:

(c) Jacob Eisenstein 2014-2015. Work in progress.

24 CHAPTER 5. DISCRIMINATIVE LEARNING

`perceptron(θ;xi, yi) =

{
0, yi = arg maxy θ

Tf(xi, y)

1, otherwise
(5.7)

This loss function has some pros and cons in comparison with Naive Bayes.

• `NB can suffer infinite loss on a single example, which suggests it will overem-
phasize some examples, and underemphasize others.

• `perceptron treats all errors equally. It only cares if the example is correct, and
not about how confident the classifier was. Since we usually evaluate on
accuracy, this is a better match.

• `perceptron is non-convex1 and discontinuous. Finding the global optimum is
intractable when the data is not separable.

We can fix this last problem by defining a loss function that behaves more
nicely. To do this, let’s define the margin as

γ(θ;xi, yi) = θTf(xi, yi)−max
y 6=yi

θTf(xi, y) (5.8)

Then we can write a convex and continuous “hinge loss” as

`hinge(θ;xi, yi) =

{
0, γ(θ;xi, yi) ≥ 1,

1− γ(θ;xi, yi), otherwise
(5.9)

Equivalently, we can write `hinge(θ;xi, yi) = (1− γ(θ;xi, yi))+, where (x)+ in-
dicates the positive part of x.

Essentially, we want a margin of at least 1 between the score for the true label
and the best-scoring alternative, which we have written ŷ.

The hinge and perceptron loss functions are shown in Figure 5.1.

Large-margin online classification

Note that we can write θ = su, where ||u||2 = 1. Think of s as the magnitude and
u as the direction of the vector θ. If the data is separable, there are many values

1As a reminder, a function f is convex iff αf(xi) + (1 − α)f(xj) ≥ f(αxi + (1 − α)xj), for
all α ∈ [0, 1] and for all xi and xj on the domain of the function. Convexity implies that any
local minimum is also a global minimum, and there are a wide array of techniques for optimizing
convex functions (Boyd and Vandenberghe, 2004)

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.3. LOSS FUNCTIONS AND LARGE-MARGIN CLASSIFICATION 25

Figure 5.1: Hinge and perceptron loss functions

of s which attain zero hinge loss. For generality, we will try to make the smallest
magnitude change to θ possible.2

At step t, we optimize:

θt+1 = arg min
θ

1

2
||θ − θt||2 s.t. `hinge(θ;xi, yi) = 0 (5.10)

Assuming that the constraint can be satisfied (i.e., the problem is linearly sep-
arabe), the optimal solution is found at,

θt+1 =θt + τt(f(yi,xi)− f(ŷ,xi)) (5.11)

τt =
`(θ;xi, yi)

||f(xi, yi)− f(xi, ŷ)||2
, (5.12)

where again ŷ is the best scoring y according to θt. This solution can be obtained
by introducing τt as a Lagrange multiplier for the constraint in (5.10).

2In the support vector machine (without slack variables), we choose the smallest magnitude
weights that satisfy the constraint of zero hinge loss. Pegasos is an online algorithm for training
SVMs (Shwartz et al., 2007); it is similar to Passive-Aggressive.

(c) Jacob Eisenstein 2014-2015. Work in progress.

26 CHAPTER 5. DISCRIMINATIVE LEARNING

If the data is not lienarly separable, there will be instances for which we can’t
meet this constraint. To deal with this, we introduce a “slack” variable ξi. We
use the slack variable to trade off between the constraint (having a large margin)
and the objective (having a small change in θ). The tradeoff is controlled by a
parameter C.

minw
1

2
||θ − θt||2 + Cξt (5.13)

s.t.`hinge(θ;xi, yi) ≤ ξt, ξt ≥ 0

The solution to 5.13 is,

θt+1 =θt + τt(f(yi,xi)− f(ŷ,xi)) (5.14)

τt = min

(
C,

`(θ;xi, yi)

||f(xi, yi)− f(xi, ŷ)||2

)
, (5.15)

• If C is 0, then infinite slack is permitted, and the weights will never change.

• As C → ∞, no slack is permitted, and the optimization is identical to equa-
tion 5.10 and 5.12.

This algorithm is called “Passive-Aggressive” (PA; Crammer et al., 2006), be-
cause it is passive when the margin constraint is satisfied, but it aggressively
changes the weights to satisfy the constraints if necessary.3

• PA is error-driven like the perceptron, but is more stable to violations of
separability, like the averaged perceptron.

• PA allows more explicit control than the Averaged Perceptron, due to the C
parameter. When C is small, we make very conservative adjustments to θ
from each instance, because the slack variables aren’t very expensive. When
C is large, we make large adjustments to avoid using the slack variables.

• You can also apply weight averaging to PA.

• Support vector machines (SVMs) are another learning algorithm based on
the hinge loss (Burges, 1998), but they try to minimize the norm of the weights,
rather than the norm of the change in the weights. They are typically trained

3A related algorithm without slack variables is called MIRA, for Margin-Infused Relaxed Al-
gorithm (Crammer and Singer, 2003).

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.4. LOGISTIC REGRESSION 27

in batch style, meaning that they have to read all the training instances in
to compute each update. However, SVMs can also be trained in an online
fashion (Shwartz et al., 2007). The LXMLS lab guide provides a simpler on-
line learning algorithm, based on stochastic subgradient descent (Figueiredo
et al., 2013).

Pros and cons of Perceptron and PA

• Perceptron and PA are error-driven, which means they usually do better in
practice than naive Bayes.

• They are also online, which means we can learn without having our whole
dataset in memory at once. NB can also be estimated online, in the sense
that you can stream the data and store the counts.

• The original perceptron doesn’t behave well if the data is not separable, and
doesn’t make it easy to control model complexity.

• All these models lack a probabilistic interpretation. Probabilities are useful
because they quantify the classification certainty, allowing us to compute ex-
pected utility, and to incorporate the classifier in more complex probabilistic
models.

5.4 Logistic regression

Logistic regression is error-driven like the perceptron, but probabilistic like Naive
Bayes. This is useful in case we want to quantify the uncertainty about a classifi-
cation decision.

Recall that NB selects weights to optimize the joint probability p(y,x).

• In NB, we factor this as p(y,x) = p(x|y)p(y).

• But we could equivalently write p(y,x) = p(y|x)p(x).

Since we always know x, we really care only about p(y|x). Logistic regres-
sion optimizes this directly. To do this, we have to define the probability function

(c) Jacob Eisenstein 2014-2015. Work in progress.

28 CHAPTER 5. DISCRIMINATIVE LEARNING

differently. We define the conditional probability directly, as,

p(y|x) =
exp

(
θTf(x, y)

)∑
y′ exp

(
θTf(x, y′)

) (5.16)

log p(y|x) =
∑
i

θTf(xi, yi)− log
∑
y′

expθTf(xi, y
′) (5.17)

θ̂ =arg max
θ

∑
i

log p(yi|xi;θ) (5.18)

Inside the sum, we have the (additive inverse of) the logistic loss.

• In binary classification, we can write this as

`logistic(θ;xi, yi) = −(yiθ
Txi − log

(
1 + expθTxi

)
) (5.19)

• In multi-class classification, we have,4

`logistic(θ;xi, yi) = −(θTf(xi, yi)− log
∑
y′

expθTf(xi, y
′)) (5.20)

The logistic loss is shown in Figure 5.2. Because it is smooth and convex, we
can optimize it through gradient steps:

` =
∑
i

θTf(xi, yi)− log
∑
y′

expθTf(xi, y
′) (5.21)

∂`

∂θ
=
∑
i

f(xi, yi)−
∑

y′ expθTf(xi, y
′)f(xi, y

′)∑
y′′ expθTf(xi, y′)

(5.22)

=
∑
i

f(xi, yi)−
∑
y′

expθTf(xi, y
′)∑

y′′ expθTf(xi, y′)
f(xi, y

′) (5.23)

=
∑
i

f(xi, yi)−
′∑
y

p(y′|xi;θ)f(xi, y
′) (5.24)

=
∑
i

f(xi, yi)− E[f(xi, y
′)] (5.25)

4The log-sum-exp term is very common in machine learning. It is numerically instable be-
cause you can underflow if the inner product is small, and overflow if the inner product is large.
Libraries like scipy contain special functions for computing logsumexp, but with some thought,
you should be able to see how to create an implementation that is numerically stable.

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.4. LOGISTIC REGRESSION 29

Figure 5.2: Hinge, perceptron, and logistic loss functions

This gradient has a very pleasing interpretation as the difference between the
observed counts and the expected counts.5 Compare this gradient with the per-
ceptron and PA update rules.

The bias-variance tradeoff is handled by penalizing large θ in the objective,
adding a term of λ

2
||θ||22. This is called L2 regularization, because of the L2 norm.

It can be viewed as placing a 0-mean Gaussian prior on θ.
This penalty contributes a term of λθ to the gradient, so we have,

` =
∑
i

θTf(xi, yi)− log
∑
y′

expθTf(xi, y
′) +

λ

2
||θ||22

∂`

∂θ
=
∑
i

f(xi, yi)− E[f(xi, y
′)]− λθ.

Optimization

Batch optimization In batch optimization, you keep all the data in memory and
iterate over it many times.

5Recall that the definition of an expected value E[f(x)] =
∑
x f(x)p(x)

(c) Jacob Eisenstein 2014-2015. Work in progress.

30 CHAPTER 5. DISCRIMINATIVE LEARNING

• The logistic loss is smooth and convex, so we can find the global optimum
using gradient descent. But in practice, this can be very slow.

• Second-order (Newton) optimization would incorporate the inverse Hes-
sian. The Hessian is

Hi,j =
∂2

∂wi∂wj
`, (5.26)

but this matrix is usually too big to deal with.

• In practice, people usually apply quasi-Newton optimization, which ap-
proximates the Hessian matrix. The specific method that is particularly pop-
ular is L-BFGS6 NLP people usually treat L-BFGS as a black box; you will
typically pass it a pointer to a function that computes the likelihood and
gradient. L-BFGS is provided in scipy.optimize.

Online optimization In online optimization, you consider one example (or a
“mini-batch” of a few examples) at a time. Stochastic gradient descent makes a
stochastic online approximation to the overall gradient:

θ(t+1) ←θ(t) − ηt∇θ`(θ(t),x,y)

=θ(t) − ηt(λθ(t) −
N∑
i

f(xi, yi)− E[f(xi, y
′)])

=(1− ληt)θ(t) + ηt

N∑
i

f(xi, yi)− E[f(xi, y
′)]

≈(1− ληt)θ(t) +Nηt
(
f(xi(t), yi(t))− E[f(xi(t), y

′)]
)

where ηt is the stepsize at iteration t, and 〈xi(t), yi(t)〉 is the instance selected at
iteration t.

• Note how similar this update is to the perceptron!

• If we set ηt = η0t
−α for α ∈ [1, 2], we have guaranteed convergence.

• We can also just fix ηt to a small value, like 10−3. (This is what we will do in
the problem set.)

6A friend of mine told me you can remember the order of the letters as “Large Big Friendly
Giants.” Does this help you?

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.4. LOGISTIC REGRESSION 31

• In either case, we could tune this parameter on a development set. However,
it would be acceptable to just find a value that gives a good regularized log-
likelihood on the training set, since this parameter relates to the quality of
the optimization, and not the generalization capability of the classifier.

• In theory, we select 〈xi(t), yi(t)〉 at random, but in practice we usually just
iterate through the dataset.

• We can fold N into η and λ, so that η∗ = Nη and λ∗ = λη∗
N

. This gives the
more compact form,

(1− λ∗η∗t)θ(t) + η∗t
(
f(xi(t), yi(t))− E[f(xi(t), y

′)]
)

(5.27)

For more on stochastic gradient descent, as applied to a number of different
learning algorithms, see (Zhang, 2004) and (Bottou, 1998). Murphy (2012) traces
SGD to a 1978 paper by GT’s own Arkadi Nemirovski (Nemirovski and Yudin,
1978). You can find several recent chapters about online optimization in the edited
volume by Sra et al. (2012).

Adagrad Recent work has shown that you can often learn more quickly by us-
ing an adaptive step-size, which is different for every feature (Duchi et al., 2011).
Specifically, in the Adagrad algorithm (adaptive gradient), you keep track of the
sum of the squares of the gradients for each feature, and rescale the learning rate
by its inverse:

gt =− f(xi, yi) +
∑
y′

p(y′ | xi)f(xi, yi) + λθ (5.28)

θ
(t+1)
j ←θ(t)j −

η√∑t
t′ g

2
t,j

gt,j, (5.29)

where j iterates over features in f(x, y). The effect of this is that features with
consistently large gradients are updated more slowly. Another way to view this
update is that rare features are taken more seriously, since their sum of squared
gradients will be smaller. Adagrad seems to require less careful tuning of η,
and Dyer (2014) reports that η = 1 works for a wide range of problems.

Note that the Adagrad update can apply to any smooth loss function, includ-
ing the hinge loss defined in Equation 5.9.

(c) Jacob Eisenstein 2014-2015. Work in progress.

32 CHAPTER 5. DISCRIMINATIVE LEARNING

Names

Logistic regression is so named because in the binary case where y ∈ {0, 1}, we
are performing a regression of x against y, after passing the inner product θTx
through a logistic transformation. You could always do a linear regression, but
this would ignore the fact that the y is limited to a few values.

• Logistic regression is also called maximum conditional likelihood (MCL),
because it maximizes... the conditional likelihood p(y | x).

• Logistic regression can be viewed as part of a larger family, called general-
ized linear models. If you use R, you are probably familiar with glmnet.

• Logistic regression is also called maximum entropy, especially in the earlier
NLP literature (Berger et al., 1996). This is due to an alternative formulation,
which tries to find the maximum entropy probability function that satisfies
moment-matching constraints.

The moment matching constraints specify that the empirical counts of each
label-feature pair should match the expected counts:

∀j,
∑
i

fj(xi, yi) =
∑
i

∑
y

p(y | xi;θ)fj(xi, y) (5.30)

Note that this constraint will be met exactly when the derivative of the likeli-
hood function (equation 5.25) is equal to zero. However, this will be true for many
values of θ. Which should we choose?

The entropy of a conditional likelihood function P (Y |X) is

H(P) = −
∑
x

p̃(x)
∑
y

p(y|x) log p(y|x), (5.31)

where p̃(x) is the empirical probability of x. We compute an empirical probability
by summing over all the instances in training set.

If the entropy is large, this function is smooth across possible values of y; if it
is small, the function is sharp. The entropy is zero if p(y|x) = 1 for some partic-
ular Y = y and zero for everything else. By saying we want maximum-entropy
classifier, we are saying we want to make the least commitments possible, while
satisfying the moment-matching constraints:

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.5. SUMMARY OF LEARNING ALGORITHMS 33

max
θ

−
∑
x

p̃(x)
∑
y

p(y|x;θ) log p(y|x;θ)

s.t. ∀j,
∑
i

fj(xi, yi) =
∑
i

∑
y

p(y|xi;θ)fj(xi, y)

Now, the solution to this constrained optimization problem is identical to the
maximum conditional likelihood (logistic-loss) formulation we’ve considered in
the previous section.

This view of logistic regression is arguably a little dated, but it’s useful to un-
derstand what’s going on. The information-theoretic concept of entropy will pop
up again a few times in the course. For a tutorial on maximum entropy, see http:
//www.cs.cmu.edu/afs/cs/user/aberger/www/html/tutorial/tutorial.
html.

5.5 Summary of learning algorithms
• Naive Bayes. pros: easy and probabilistic. cons: arguably optimizes wrong

objective; usually has poor accuracy, especially with overlapping features.

• Perceptron and PA. pros: easy, online, and error-driven. cons: not proba-
bilistic. this can be bad in pipeline architectures, where the output of one
system becomes the input for another.

• Logistic regression. pros: error-driven and probabilistic. cons: batch learn-
ing requires black-box software; hinge loss sometimes yields better accuracy
than logistic loss.

What about non-linear classification?

The feature spaces that we consider in NLP are usually huge, so non-linear clas-
sification can be quite difficult. When the feature dimension V is larger than the
number of instances N — often the case in NLP — you can always learn a linear
classifier that will perfectly classify your training instances.7 This makes select-
ing an appropriate non-linear classifier especially difficult. Nonetheless, there are
some approaches to non-linear learning in NLP:

7Assuming your feature matrix is full-rank.

(c) Jacob Eisenstein 2014-2015. Work in progress.

34 CHAPTER 5. DISCRIMINATIVE LEARNING

• You can add features, such as bigrams, which are non-linear combinations
of other features. For example, the base feature 〈coffee house〉 will not fire
unless both features 〈coffee〉 and 〈house〉 also fire.

• Another option is to apply non-linear transformations to the feature vec-
tor. Recall that the feature function f(x, y) may be composed of a vector of
word counts, padded by zeros. We can think of these word counts as basic
features, and apply non-linear transformations, such as x ◦ x or |x|.

• There is some work in NLP on using kernels for strings, bags-of-words, se-
quences, trees, etc. Kernelized learning algorithms are outside the scope of
this class (Collins and Duffy, 2001; Zelenko et al., 2003). Kernel-based learn-
ing can be seen as a generalization of algorithms such k-nearest-neighbors,
which classifies instances by considering the labels of the k most similar in-
stances in the training set (Hastie et al., 2009).

• Boosting (Freund et al., 1999) and decision tree algorithms (Schmid, 1994)
sometimes do well on NLP tasks, but they are used less frequently these
days, especially as the field increasingly emphasizes big data and simple
classifiers.

• More recent work has shown how deep learning can perform non-linear
classification. One way to use deep learning in NLP is by learning word
representations while jointly learning how these representations combine to
classify instances (Collobert and Weston, 2008). This approach is very hot at
the moment, so I will discuss it towards the end of the semester.

5.6 Summary of classifiers
So now we’ve talked about four different classifiers. That’s it! No more classifiers
in this class. Yay? Anyway, let’s review.

(c) Jacob Eisenstein 2014-2015. Work in progress.

5.6. SUMMARY OF CLASSIFIERS 35

N
aive

Bayes
Logistic

R
egression

Perceptron
PA

O
bjective

Jointlikelihood
C

onditionallikelihood
0-1

loss
H

inge
loss

m
a
x ∑

i log
p
(x
i ,y

i)
m
ax ∑

i log
p
(y
i |x

i)
m
in ∑

i δ(y
i ,ŷ

)
∑
i [1
−
γ
(θ
;x

i ,y
i)]+

estim
ation

θ
ij
=

c
(x

i ,y
=
j
)+
α

c
(y

=
j
)+
V
α

∂L∂θ
= ∑

i f
(x
i ,y

i)−
E
[f
(x
i ,y

)]
θ
(t)←

θ
(t−

1
)
+
f
(x
i ,y

i)−
f
(x
i ,ŷ

)
θ
(t)←

θ
(t−

1
)
+
τ
t (f

(x
i ,y

i)−
f
(x
i ,ŷ

))

tuning
sm

oothing
α

regularizer
λ||θ|| 22

w
eightaveraging

slack
penalty

C
com

plexity
O
(N
V
)

O
(N
V
T
)

O
(N
V
T
)

O
(N
V
T
)

easy?
very

notreally
yes

yes
probabilities?

yes
yes

no
no

features?
no

yes
yes

yes

Table 5.1: Comparison of classifiers. N = number of examples, V = number of
features, T = number of instances.

(c) Jacob Eisenstein 2014-2015. Work in progress.

Chapter 6

Word-sense disambiguation

Todo: add notes about WSD here

37

Chapter 7

Learning without supervision

So far we’ve assumed the following setup:

• A training set where you get observations xi and labels yi

• A test set where you only get observations xi

What if you never get labels yi?
For example, you get a bunch of text, and you suspect that there are at least two
different meanings for the word concern.1

The immediate context includes two groups of words:

• services, produces, banking, pharmaceutical, energy, electronics

• about, said, that, over, in, with, had

Suppose we plot each instance of concern on a graph

• x-axis is the density of words in group 1

• y-axis is the density of words in group 2

Two blobs might emerge. These blobs would correspond to two different sense of
concern.

• But in reality, we don’t know the word groupings in advance.

1example from Pedersen and Bruce (1997)

39

40 CHAPTER 7. LEARNING WITHOUT SUPERVISION

• We have to try to apply the same idea in a very high dimensional space,
where every word gets its own dimension (and most dimensions are irrele-
vant!)

• Or we have to automatically find a low-dimensional projection. More on
that much later in the course.

Here’s a related scenario:

• You look at thousands of news articles from today

• Plot them on a graph of Miley vs Syria

• Three clumps emerge (Miley, Syria, others)

• Those clumps correspond to natural document classes

• Again, in reality this is a hugely high-dimensional graph

So these examples show that we can find structure in data, even without labels.

7.1 K-means clustering
You might know about classic clustering algorithms like K-means. These algo-
rithms are iterative:

1. Guess the location of cluster centers.

2. Assign each point to the nearest center.

3. Re-estimate the centers as the mean of the assigned points.

4. Goto 2.

This is an algorithm for finding coherent “blobs” of documents.
There is a variant called “soft k-means.”

• Instead of assigning each point xi to a specific cluster zi

• You assign it a distribution over clusters qi(zi)

We’re now going to explore a more principled, statistical version of soft K-
means, called EM clustering.

By understanding the statistical principles underlying the algorithm, we can
extend it in a number of cool ways.

(c) Jacob Eisenstein 2014-2015. Work in progress.

7.2. THE EXPECTATION-MAXIMIZATION ALGORITHM 41

7.2 The Expectation-Maximization Algorithm
Let’s go back to the Naive Bayes model:

log p(x,y;φ, µ) =
∑
i

log p(xi|yi;φ)P (yi;µ)

For example, x can describe the documents that we see today, and y can corre-
spond to their labels. But suppose we never observe yi? Can we still do some-
thing?

Since we don’t know y, let’s marginalize it:

log p(x) = log
∑
y

p(x|y;φ)p(y;µ) (7.1)

= log
∑
y

∏
i

p(xi|yi;φ)p(yi;µ) (7.2)

=
∑
i

log
∑
yi

p(xi|yi;φ)p(yi;µ) (7.3)

Now we introduce an auxiliary variable qi, for each yi. We have the usual
constraints:

∑
y qi(y) = 1 and ∀y, qi(y) ≥ 0. In other words, qi defines a probability

distribution over Y , for each instance i.
Now since qi(y)

qi(y)
= 1,

log p(x) =
∑
i

log
∑
yi

p(xi|yi;φ)p(yi;µ)
qi(y)

qi(y)

=
∑
i

logEq[
p(xi|y;φ)p(y;µ)

qi(y)
],

by the definition of expectation. (Note that Eq just means the expectation under
the distribution q.)

Now we apply Jensen’s inequality. Jensen’s equality says that because log is
concave, we can push it inside the expectation, and obtain a lower bound.

log p(x) ≥
∑
i

Eq[log
p(xi|y;φ)p(yi;µ)

qi(y)
]

J =
∑
i

Eq[log p(xi|y;φ)] + Eq[log p(y;µ)]− Eq[qi(y)]

(c) Jacob Eisenstein 2014-2015. Work in progress.

42 CHAPTER 7. LEARNING WITHOUT SUPERVISION

By maximizing J , we are maximizing a lower bound on the joint log-likelihood
log p(x).

Now, J is a function of two arguments:

• the distributions qi(y) for each i

• the parameters µ and φ

We’ll optimize with respect to each of these in turn, holding the other one fixed.

The E-step

First, we expand the expectation in the lower bound as:

J =
∑
i

Eq[log p(xi|y;φ)] + Eq[log p(y;µ)]− Eq[qi(y)]

=
∑
i

∑
y

qi(y) (log p(xi|Yi = y;φ) + log p(y;µ)− log qi(y))

As in relative frequency estimation of Naive Bayes, we need to add a Lagrange
multiplier to ensure

∑
y qi(y) = 1, so

J =
∑
i

∑
y

qi(y) (log p(xi|Yi = y;φ) + log p(y;µ)− log qi(y)) + λi(1−
∑
y

qi(y))

∂J
∂qi(y)

= log p(xi|Yi = y;φ) + log p(y;θ)− log qi(y)− 1− λi

log qi(y) = log p(xi|Yi = y;φ) + log p(y;µ)− 1− λi
qi(y) ∝p(xi|Yi = y;φ)p(y;µ)

∝p(xi, y;φ, µ)

qi(y) =
p(xi, y;φ, µ)∑
y′ p(xi, y′;φ, µ)

=P (Yi = y|xi;θ, φ)

After normalizing, each qi(y) – which is the soft distribution over clusters for
data xi – is set to the conditional probability P (yi|xi) under the current parameters
µ,φ.

This is called the E-step, or “expectation step,” because it is derived from up-
dating the expected likelihood under q(y).

(c) Jacob Eisenstein 2014-2015. Work in progress.

7.2. THE EXPECTATION-MAXIMIZATION ALGORITHM 43

The M-step

Next, we hold q(y) fixed and update the parameters. Let’s doφ, which parametrizes
p(x|y). Again, we start by adding Lagrange multipliers to the lower bound,

J =
∑
i

∑
y

qi(y) (log p(xi|Yi = y;φ) + log p(y;µ)− log qi(y)) +
∑
y

λy(1−
∑
j

φy,j)

∂J
∂φy,j

=
∑
i

qi(y)
xi,j
φy,j
− λy

λhφy,j =
∑
i

qi(y)xi,j

φy,j =

∑
i qi(y)xi,j∑

j′
∑

i qi(y)xi,j′
=
Eq[count(y, j)]
Eq[count(y)]

So φy is now equal to the relative frequency estimate of the expected counts
under the distribution q(y).

• As in supervised Naı̈ve Bayes, we can apply smoothing to add α to all these
counts

• The update for µ is identical: µy ∝
∑

i qi(y), the expected proportion of clus-
ter Y = y. If needed, we can add smoothing here too.

• So, everything in the M-step is just like Naive Bayes, except we used ex-
pected counts rather than observed counts.

Coordinate ascent

Algorithms that alternate between updating various subsets of the parameters are
called “coordinate-ascent” algorithms.

The objective function J is biconvex, meaning that it is separately convex in
q(y) and 〈µ,φ〉, but it is not jointly convex.

• Each step is guaranteed not to decrease J

• This is called hill-climbing: you never go down.

• Specifically, EM is guaranteed to converge to a local optima – a point which
is as good or better than any of its immediate neighbors. But there may be
many such points.

(c) Jacob Eisenstein 2014-2015. Work in progress.

44 CHAPTER 7. LEARNING WITHOUT SUPERVISION

• But the overall procedure is not guaranteed to find a global maximum.

• This means that initialization is important: where you start can determine
where you finish.

• This is not true in most of the supervised learning algorithms that we have
considered, such as logistic regression; in that case, we are optimizing log p(y|x;θ),
which is defined so as to be convex with respect to the parameter θ. This
means that for logistic regression (and many other supervised learning algo-
rithms), we don’t need to worry about initialization, because it won’t affect
our ultimate solution: we are guaranteed to reach the global minimum.

7.3 Applications of EM
EM is not really an “algorithm” like, say, quicksort. Rather, it’s a framework for
learning with missing data. The recipe for using EM on a problem of interest to
you is something like this:

• Introduce latent variables z, such that it’s easy to write the probability P (D, z),
where D is your observed data, and easy to estimate the associated parame-
ters.

• Derive the E-step updates for q(z), which is typically factored as q(z) =∏
i qzi(zi).

Some applications of this basic setup are presented here.

Word sense clustering

In the “demos” folder, you can find a demonstration of expectation-maximization
for word sense clustering. I assume we know that there are two senses, and
that the senses can be distinguished by the contextual information in the docu-
ment. The basic framework is identical to the clustering model of EM as presented
above.

Semi-supervised learning

Nigam et al. (2000) offer another application of EM: semi-supervised learning.
They apply this idea to document classification in the classic “20 Newsgroup”
dataset.

(c) Jacob Eisenstein 2014-2015. Work in progress.

7.3. APPLICATIONS OF EM 45

• In this setting, we have labels for some of the instances, 〈x(`),y(`)〉, but not
for others, 〈x(u)〉.

• Can unlabeled data improve learning?

We will choose parameters to maximize the joint likelihood,

log p(x(`),x(u),y(`)) = log p(x(`),y(`)) + log p(x(u)) (7.4)

• We treat the labels of the unlabeled documents as missing data. In the E-step
we impute q(y) for the unlabeled documents only.

• The M-step computes estimates of µ and φ from the sum of the observed
counts from 〈x(`),y(`)〉 and the expected counts from 〈x(u)〉 and q(y).

• We can further parametrize this approach by weighting the unlabeled doc-
uments by a scalar λ, which is a tuning parameter.

Multi-component modeling

• One of the classes in 20 newsgroups is comp.sys.mac.hardware.

• Suppose that there are two kinds of posts: reviews of new hardware, and
question-answer posts about hardware problems.

• The language in these components of the mac.hardware class might have
little in common.

• So we might do better if we model these components separately.

We can envision a new generative process here:

• For each document i,

– draw the label yi ∼ Categorical(θ)

– draw the component zi|yi ∼ Categorical(ψyi)

– draw the vector of counts xi|zi ∼Multinomial(φzi)

(c) Jacob Eisenstein 2014-2015. Work in progress.

46 CHAPTER 7. LEARNING WITHOUT SUPERVISION

Our labeled data includes 〈xi, yi〉, but not zi, so this is another case of missing
data.

p(xi, yi) =
∑
z

p(xi, yi, z)

=p(xi|z;φ)p(z|yi;ψ)p(yi;µ)

Again, we can apply EM

• We need a distribution over the missing data, qi(z). This is updated during
the E-step.

• During the m-step, we compute:

ψy,z =
Eq[count(y, z)]∑
z′ Eq[count(y, z′)]

φj,y,z =
Eq[count(z, j)]∑
j′ Eq[count(z, j′)]

• Suppose we assume each class y is associated with K components, Zy. We
can add a constraint to the E-step so that qi(z) = 0 if z /∈ Zy ∧ Yi = y.

(c) Jacob Eisenstein 2014-2015. Work in progress.

Chapter 8

Language models

A language model is used to compute the probability of a sequence of text. Why
would we want to do this? Thus far, we have considered problems where text is
the input, and we want to select an output, such as a document class or a word
sense. But in many of the most prominent problems in language technology, text
itself is the output:

• machine translation

• speech recognition

• summarization

As we will soon see, we can produce more fluent text output by computing
the probability of the text.

Specifically, suppose we have a vocabulary of word types

V = {aardvark, abacus, . . . , zither} (8.1)

Given a sequence of word tokens w1, w2, . . . , wM , with wi ∈ V , we would like to
compute the probability p(w1, w2, . . . , wM). We will do this in a data-driven way,
assuming we have a corpus of text.

• For now, we’ll assume that the vocabulary V covers all the word tokens that
we will ever see. Of course, we can enforce this by allocating a special token
♠ for unknown words. However, this might not be a great solution, as we
will see later.

• Language models typically make an independence assumption across sen-
tences, p(s1, s2, . . .) =

∏
j p(sj), where each sentence sj = [w1,w2, . . . ,wNj

].

47

48 CHAPTER 8. LANGUAGE MODELS

So for our purposes, it is sufficient to compute the probability of sentences.
The justification for this assumption is that the probability of words that are
not in the same sentence don’t depend on each other too much. Clearly this
isn’t true: once I mention Manuel Noriega once in a document, I’m far more
likely to mention him again (Church, 2000). But the dependencies between
words within a sentence are usually even stronger, and are more relevant to
the fluency considerations inherent in applications such as translation and
speech recognition (which are typically evaluated at the sentence level any-
way).

So how can we compute the probability of a sentence? The simplest idea
would be to apply a relative frequency estimator:

p(Computers are useless, they can only give you answers) (8.2)

=
count(Computers are useless, they can only give you answers)

count(all sentences ever spoken)
(8.3)

It’s useful to think about this estimator in terms of bias and variance.

• In the theoretical limit of infinite data, it might work. But in practice, we are
asking for accurate counts over an infinite number of events, since sentences
can be arbitrarily long.

• Even if we set an aggressive upper bound of, say, n = 20, the number of
possible sentences is #|V|20. A small vocabularly for English would have
#|V| = 104, so we would have 1080 possible sentences.

• Clearly, this estimator is extremely data-hungry. We need to introduce bias
to have a chance of making reliable estimates.

Are language models meaningful? What are the probabilities of the following
two sentences?

• Colorless green ideas sleep furiously

• Furiously sleep ideas green colorless

Noam Chomsky used this pair of examples to argue that the probability of a
sentence is a meaningless concept:

(c) Jacob Eisenstein 2014-2015. Work in progress.

49

• Any English speaker can tell that the first sentence is grammatical but the
second sentence is not.

• Yet neither sentence, nor their substrings, had ever appeared at the time that
Chomsky wrote this article (they have appeared lots since then).

• Thus, he argued, empirical probabilities can’t distinguish grammatical from
ungrammatical sentences.

Pereira (2000) showed that by identifying classes of words (e.g., noun, verb,
adjective, adverb — but not necessarily these grammatical categories), it is easy to
show that the first sentence is more probable than the second. We will talk about
class-based language models later.

Are language models useful? Suppose we want to translate a sentence from
Spanish:

• El cafe negro me gusta mucho.

• Word-for-word: The coffee black me pleases much.

• But a good language model of English will tell us:

P (The coffee black me pleases much) < P (I like black coffee a lot) (8.4)

• How can we use this fact?

Warren Weaver on translation as decoding:

When I look at an article in Russian, I say: ’This is really written in
English, but it has been coded in some strange symbols. I will now
proceed to decode.’

This motivates a generative model (like Naive Bayes!):

• English sentence w(e) generated from language model pe(w
(e))

• Spanish sentence w(s) generated from noisy channel ps|e(w
(s)|w(e))

(picture)
Then the decoding problem is: maxw(e) p(w(e)|w(s)) ∝ p(w(s),w(e)) = p(w(e))p(w(s)|w(e))

(c) Jacob Eisenstein 2014-2015. Work in progress.

50 CHAPTER 8. LANGUAGE MODELS

• The translation model is p(w(s)|w(e)). This ensures the adequacy of the
translation.

• The language model is p(w(e)). This ensures the fluency of the translation.

What else can we model with a noisy channel?

• Speech recognition (original = words; encoded = sound)

• Spelling correction (original = well-spelled text; encoded = text with spelling
mistakes)

• Part of speech tagging (original = tags; encoded = words)

• Parsing (original = parse tree; encoded = words)

• ...

The noisy channel model allows us to decompose NLP systems into two parts:

• The translation model, which we need labeled data to estimate.

• The language model, which we need only unlabeled data to estimate.

Since there is always more unlabeled data, this means we can improve NLP
systems just by improving pe(w).

8.1 N-gram language models
We began with the relative frequency estimator,

p(Computers are useless, they can only give you answers) (8.5)

=
count(Computers are useless, they can only give you answers)

count(all sentences ever spoken)
(8.6)

We’ll define the probability of a sentence as the probability of the words (in
order): p(w) = p(w1, w2, . . . , wM). We can apply the chain rule:

p(w) =p(w1, w2, . . . , wM)

=p(w1)p(w2 | w1)p(w3 | w2, w1) . . .p(wM | wM−1, . . . , w1)

(c) Jacob Eisenstein 2014-2015. Work in progress.

8.1. N-GRAM LANGUAGE MODELS 51

Each element in the product is the probability of a word given all its predeces-
sors. We can think of this as a word prediction task: Computers are [BLANK]. The
relative frequency estimate:

p(useless|computers are) =
count(computers are useless)∑

x count(computers are x)
=

count(computers are useless)
count(computers are)

Note that we haven’t made any approximations yet, and we could have ap-
plied the chain rule in reverse order, p(w) = p(wM)p(wM−1|wM) . . ., or in any
other order. But this means that we also haven’t really improved anything ei-
ther: to compute the conditional probability P (WM | WM−1,WM−2, . . .), we need
to model #|V|N−1, with #|V| events. We can’t even store this probability distribu-
tion, let alone reliably estimate it.

N-gram models

N-gram models make a simple approximation: condition on only the past n − 1
words.

p(wm | wm−1 . . . w1) ≈P (wm | wm−1, . . . , wm−n+1)

This means that the probability of a sentence w can be computed as

p(w1, . . . , wM) ≈
∏
m

p(wm | wm−1, . . . , wm−n+1)

• To compute the probability of a whole sentence, it’s convenient to pad the
beginning and end with special symbols ♦ and �. Then the bigram (n = 2)
approximation to the probability of I like black coffee is:

p(I | ♦)p(like | I)p(black | like)p(coffee | black)p(� | coffee) (8.7)

• In this model, we have to estimate and store the probability of only #|V|n
events. A very common choice is a trigram model, in which n = 3.

• The n-gram probabilities can be determined by relative frequency estima-
tion,

p(w|u, v) =
count(u, v, w)

count(u, v)
=

count(u, v, w)∑
w′ count(u, v, w′)

(8.8)

(c) Jacob Eisenstein 2014-2015. Work in progress.

52 CHAPTER 8. LANGUAGE MODELS

There could be too problems with an n-gram language model:

• n is too small. In this case, we are missing important linguistic context.
Consider the following sentences:

– Gorillas always like to groom THEIR friends.

– The computer that’s on the 3rd floor of our office building CRASHED.

The bolded words depend crucially on their predecessors in italics: their
depends on knowing that gorillas is plural, and crashed depends on knowing
that the subject is a computer. The resulting model would offer probabilities
that are too low for these sentences, and too high for sentences that fail basic
linguistic tests like number agreement.

• n is too big. In this case, we can’t make good estimates of the n-gram pa-
rameters from our dataset. See the slides for some examples of this.

• These two problems point to another bias/variance tradeoff. Can you see
how it works?

• In reality, we often have both problems! Language is full of long-range de-
pendencies, and datasets are small.

We will seek approaches to keep n large, while still making low-variance es-
timates of the underlying parameters. To do this, we will introduce a different
sort of bias: smoothing. But before we talk about that, let’s consider how we can
evaluate language models.

8.2 Evaluating language models

• Because language models are typically components of larger systems (lan-
guage modeling is not really an application itself), we would prefer extrinsic
evaluation: does the LM help the task (translation or whatever). But this is
often hard to do, and depends on details of the overall system which may
be irrelevant to language modeling.

• Intrinsic evaluation is task-neutral. Better performance on intrinsic metrics
may be expected to improve extrinsic metrics across a variety of tasks (unless
we are over-optimizing the intrinsic metric).

(c) Jacob Eisenstein 2014-2015. Work in progress.

8.2. EVALUATING LANGUAGE MODELS 53

Held-out likelihood

A popular intrinsic metric is the held-out likelihood.

• We obtain a test corpus, and compute the (log) probability according to our
model. It is crucial that the words in this corpus were not used in estimating
the model itself.

• A good model should assign high probability to this held-out data.

• Specifically, we compute

`(w) =
∑
i

∑
m

log p(w(i)
m |w

(i)
m−1, . . . , w

(i)
m−n+1), (8.9)

for all sentences w(i) in the held-out corpus.

Perplexity

Perplexity is a transformation of the held-out likelihood, into an information-
theoretic quantity. Specifically, we compute

PP (w) = 2−
`(w)
M

, (8.10)

where M is the total number of tokens in the held-out corpus.

• After this transformation, we now prefer lower values. In the limit, we ob-
tain probability 1 for our held-out corpus, with PP = 2− log 1 = 1.

• Assume a uniform, unigram model in which P (si) = 1
V

for all V words in
the vocabulary. Then,

PP (w) =

[(
1

V

)M]− 1
M

=

(
1

V

)−1
= V

• We can think of perplexity as the weighted branching factor at each word in
the sentence.

– If we have solved the word prediction problem perfectly, PP (w) = 1,
because there is only one possible choice.

(c) Jacob Eisenstein 2014-2015. Work in progress.

54 CHAPTER 8. LANGUAGE MODELS

– If we have only a uniform model that assigns equal probability to every
word, PP (w) = V .

– Most models fall somewhere in between.

– Here’s how you remember: lower perplexity is better, because you are
less perplexed.

Example On 38M tokens of WSJ, V ≈ 20K, (Jurafsky and Martin, 2009, page 97)
obtain these perplexities on a 1.5M token test set.

• Unigram: 962

• Bigram: 170

• Trigram: 109

Will it keep going down? See slides from (Manning and Schütze, 1999).

Information theory*

Perplexity is very closely related to the concept of entropy, the expected value of
the information contained in each word.

H(P) = −
∑
w

p(w) log p(w) (8.11)

The true entropy of English (or any real language) is unknown. Claude Shannon,
one of the founders of information theory, wanted to compute upper and lower
bounds. He would read passages of 15 characters to his wife, and ask her to guess
the next character, recording the number of guesses it took for her to get the correct
answer. As a fluent speaker of English, his wife could provide a reasonably tight
bound on the number of guesses needed per character. Question: is this an upper
bound or a lower bound?

Cross-entropy is a relationship between two probability distributions, the true
one P (W) and an estimate Q(W).

(c) Jacob Eisenstein 2014-2015. Work in progress.

8.2. EVALUATING LANGUAGE MODELS 55

H(P,Q) =EP [logQ]

=−
∑
w

p(w) log q(w)

=
∑
w

p(w) log
p(w)

q(w)
− p(w) log p(w)

=DKL(P ||Q) +H(Q)

So the cross-entropy is the KL-divergence between P andQ – a non-symmetric
distance measure between distributions, which we will see again later in the course
– plus the entropy of P . Since P is the language itself, we can only control Q, and
minimizing the cross-entropy is equivalent to minimizing the KL-divergence.

We do not have access to the true P (W), just a sequence w = {w1, w2, . . . , },
which is sampled from P (W). In the limit, the length of w is infinite, so we have,

H(P,Q) =−
∑
w

p(w) log q(vw)

=− lim
M→∞

1

M
log q(w)

≈− 1

M
log q(w)

PP (S) =2−
1
M

log q(vw)

A good language model has low cross-entropy with P (W), and thus low per-
plexity.

Further aside : A related topic in psycholinguistics is the “constant entropy rate
hypothesis,” also called the “uniform information density hypothesis.” The hy-
pothesis is that speakers should prefer linguistic choices that convey a uniform
amount of information over time (Jaeger, 2010). Some evidence:

• Speakers shorten predictable words, lengthen unpredictable ones

• High-entropy sentences take longer to read

• Syntactic reductions (e.g., I’m versus I am) are more likely when the reducible
word contains less information.

(c) Jacob Eisenstein 2014-2015. Work in progress.

56 CHAPTER 8. LANGUAGE MODELS

8.3 Smoothing and discounting
We want to estimate P (W) from sparse statistics, avoiding p(w) = 0.

Laplace/Lidstone smoothing

Simplest idea: just add “pseudo-counts”

pLaplace(w | v) =
count(v, w) + α∑
w′ count(v, w′) + V α

(8.12)

Anything that we add to the numerator (α) must also appear in the dominator
(V α). We can capture this with the concept of effective counts:

c∗i = (ci + α)
N

N + V α

The discount for each n-gram is:

di =
c∗i
ci

=
(ci + α)

ci

N

(N + α)

• In general, this is called Lidstone smoothing

• When α = 1, we are doing Laplace smoothing

• When α = 0.5, we are following Jeffreys-Perks law

• Manning and Schütze (1999) offer more insight on the justifications for Jeffreys-
Perks smoothing

Discounting and backoff

Discounting “borrows” probability mass from observed n-grams and redistributes
it.

• In Lidstone smoothing, we borrow probability mass by increasing the de-
nominator of the relative frequency estimates, and redistribute it by increas-
ing the numerator for all n-grams.

• Instead, we could borrow the same amount of probability mass from all ob-
served counts, and redistribute it among only the unobserved counts. This
is called absolute discounting.

(c) Jacob Eisenstein 2014-2015. Work in progress.

8.3. SMOOTHING AND DISCOUNTING 57

• For example, if we set an absolute discount d = 0.1 in a trigram model, we
get: p(w|denied the) =

word counts c effective counts c∗ unsmoothed probability smoothed probability
allegations 3 2.9 0.429 0.414

reports 2 1.9 0.286 0.271
claims 1 0.9 0.143 0.129

request 1 0.9 0.143 0.129
charges 0 0.2 0.000 0.029
benefits 0 0.2 0.000 0.029

. . .

• We need not redistribute the probability mass equally. Instead, we can back-
off to a lower-order language model.

• In other words: if you have trigrams, use trigrams; if you don’t have tri-
grams, use bigrams; if you don’t even have bigrams, use unigrams. (And
what if you don’t even have unigrams?). This is called Katz backoff.

c∗(u, v) =c(u, v)− d

pbackoff(v | u) =

{
c∗(u,v)
c(u)

if c(u, v) > 0

α(u)× pbackoff(v)∑
v′:c(u,v′)=0 pbackoff(v

′)
if c(u, v) = 0

Typically we can set d to minimize perplexity on a development set.

Interpolation

An alternative to this discounting scheme is to do interpolation: the probability
of a word in context is a weighted sum of its probabilities across progressively
shorter contexts.

Instead of choosing a single n-gram order, we can take the weighted average:

pInterpolation(w|u, v) = λ1p∗1(w|u, v)

+ λ2p∗2(w|u)

+ λ3p∗1(w)

(c) Jacob Eisenstein 2014-2015. Work in progress.

58 CHAPTER 8. LANGUAGE MODELS

• p∗k is the maximum likelihood estimate (MLE) of a k-gram model

• Constraint:
∑

z λz = 1

• We can tune λ on heldout data...

• Or we can use expectation maximization!

EM for interpolation We can add a latent variable zm, indicating the order of the
n-gram that generated word wm. Generative story:

• For each word m

– Draw zm ∼ Categorical(λ(wm))

– Draw wm ∼ p∗zm(wm|sm−1, . . . sm−zm)

As always we have two quantities of interest in our EM application:

• The parameters, λ.

• Our beliefs about the latent variables. Let qm(z) be our degree of belief that
word token wm was generated from a n-gram of order z.

Having defined these quantities, we can derive EM updates:

• E-step: qm(z) = p(z|w1:m) =
p∗z(wm|wm−1,...,wm−z+1)∑
z′ p∗

z′ (wm|wm−1,...wm−z′+1)
p(z′|λ(wm))

• M-step: λ(w)z = Eq [count(W=w,Z=z)]∑
z′ Eq [count(W=w,Z=z′)]

By running the EM algorithm, we can obtain a good estimate of λ, which we
can then use for unseen data. It should be clear how we can extend this approach
to trigrams and beyond; Collins (2013) offers more details.

Kneser-ney smoothing

Kneser-ney smoothing also incorporates discounting, but redistributes the result-
ing probability mass in a different way. Consider the example:

I recently visited

• Francisco?

• Duluth?

(c) Jacob Eisenstein 2014-2015. Work in progress.

8.4. OTHER TYPES OF LANGUAGE MODELS 59

Key idea: some words are more versatile than others.

• Suppose p∗(Francisco) > p∗(Duluth), and c(visited Francisco) = c(visited Duluth) =
0.

• We would still guess that p(visited Duluth) > P (visited Francisco), because
Duluth is a more versatile word.

We define the Kneser-Ney bigram probability as

pKN(v|u) =

{
count(u,v)−d

count(u) , count(u, v) > 0

α(u)pcontinuation(v), otherwise

pcontinuation(v) =
#|u : count(u, v) > 0|∑
v′ #|u′ : count(u′, v′) > 0|

• We reserve probability mass using absolute discounting d.

• The continuation probability pcontinuation(u) is proportional to the number of
observed contexts in which u appears.

• As in Katz backoff, α(v) makes the probabilities sum to 1

• In practice, interpolation works a little better than backoff

pKN(v|u) =
count(u, v)− d

count(u)
+ λ(u)pcontinuation(v) (8.13)

• This idea of counting contexts may seem heuristic, but actually there is a
cool justification from Bayesian nonparametrics (Teh, 2006).

8.4 Other types of Language Models

Interpolated Kneser-Ney is pretty close to state-of-the-art. But there are some in-
teresting other types of language models, and they apply ideas that we have al-
ready learned.

(c) Jacob Eisenstein 2014-2015. Work in progress.

60 CHAPTER 8. LANGUAGE MODELS

Mixed-order n-gram models

Saul and Pereira (1997) described a “mixed-order” n-gram model, where you
condition on multiple bigram contexts, skipping over intermediate words:

p(wm|wm−1, . . . , wm−n+1) =
∑
k

λk(wm−k)p̃(wm|wm − k)
k−1∏
j

[1− λj(wm−j)] (8.14)

• This is an interpolated model, because we are taking the weighted average
over a bunch of bigram probabilities.

• Note that the interpolation weight depends on the context word, λk(wm−k).
This means that some words can prefer certain dependency lengths — for
example, adjectives might prefer short dependencies, since they tend to af-
fect adjacent nouns, while verbs might prefer longer dependencies, since
they can affect indirect objects that are further away.

• The final product ensures that the weights in any particular context must
add up to one: each λk is taking a slice of the probability mass that has
already been used by the earlier contexts j < k.

• The parameters λk(w) can be estimated by expectation maximization, just
like in the interpolated N-gram model above.

Class-based language models

The reason we need smoothing is because the trigram probability model p(w|u, v)
has a huge number of parameters. Let’s simplify:

pclass(w|v) =
∑
z

P (w|z; θ)P (z|v;φ),

where z ∈ [1, K], K � V .
We get a bigram probability using 2V K parameters instead of V 2.
We could use EM to estimate θ and φ (Saul and Pereira, 1997).

• The latent variable is the class z, so the e-step updates qm(z)

• The parameters are θ and φ, which can be updated in the M-step.

But this is usually too slow, so there are approximate algorithms, like “ex-
change clustering” (Brown et al 1992), which assigns each word type to a single
class.

(c) Jacob Eisenstein 2014-2015. Work in progress.

8.4. OTHER TYPES OF LANGUAGE MODELS 61

Discriminative language models

• Or we could just train a model to predict p(wm|wm−1, wm−2, . . .) directly.

• We might be able to use arbitrary features of the history to model long-range
dependencies.

• Algorithms such as perceptron and logistic regression have been consid-
ered (Rosenfeld, 1996; Roark et al., 2007)

• Currently, “neural probabilistic language models” are attracting a lot of in-
terest. The log-bilinear model (Mnih and Hinton, 2008) looks like this:

phθ (w) =
exp(sθ(w, h))∑
w′ exp(sθ(w′, h))

sθ(w, h) = q̂T
hqw + bw,

where h is the history context, q̂h is a latent description of the history, qw
is a latent description of the word, and bw is an offset. The history context
can be computed from the words themselves, as q̂h =

∑m−1
i Ciqi, where the

matrix Ci is applied to context position i. All parameters can be estimated to
directly maximize the probability of a corpus, using gradient ascent.

• Recent work has focused on efficiently training such models, with increas-
ingly convincing results on large training sets (Mikolov et al., 2011).

(c) Jacob Eisenstein 2014-2015. Work in progress.

Chapter 9

Finite-state automata

Finite-state automata are a powerful formalism for representing a subset of formal
languages, the regular languages. As we will see, this formalism can also be used
as a building block for an incredibly wide range of methods for manipulating
natural language too (Mohri et al., 2002). This chapter will especially focus on
morphology, which concerns how words are built out of smaller units. For a good
reference on morphology for natural language processing, see (Bender, 2013).

Basics of the formalism :

• An alphabet Σ is a set of symbols

• A string ω is a sequence of symbols.
The empty string ε contains zero symbols.

• A language L ⊆ Σ∗ is a set of strings.

An automaton is an abstract model of a computer which reads an input string,
and either accepts or rejects it.

Chomsky Hierarchy Every automaton defines a language. Different automata
define different classes of languages. The Chomsky Hierarchy:

• Finite-state automata define regular languages

• Pushdown automata define context-free languages

• Turing machines define recursively-enumerable languages

63

64 CHAPTER 9. FINITE-STATE AUTOMATA

Finite-state automata A finite-state automaton M = 〈Q,Σ, q0, F, δ〉 consists of:

• A finite set of states Q = {q0, q1, . . . , qn}

• A finite alphabet Σ of input symbols

• A start state q0 ∈ Q

• A set of final states F ⊆ Q

• A transition function δ

Determinism

• In a deterministic (D)FSA, δ : Q× Σ→ Q.

• In a nondeterministic (N)FSA, δ : Q× Σ→ 2Q

• We can determinize any NFSA using the powerset construction, but the
number of states in the resulting DFSA may be 2n.

• Any regular expression can be converted into an NFSA, and thus into a
DFSA.

The English Dictionary as an FSA We can build a simple “chain” FSA which
accepts any single word. So, we can define the English dictionary with an FSA.
However, we can make this FSA much more compact. (see slides)

• Begin by taking the union of all of the chain FSAs by defining epsilon tran-
sitions (that is, transitions which do not consume an input symbol) from the
start state to chain FSAs for each word (5303 states / 5302 arcs using a 850
word dictionary of “basic English”)

• Eliminate the epsilon transitions by pushing the first letter to the front (4454
states / 4453 arcs)

• Determinize (2609 / 2608)

• Minimize (744 / 1535). The cost of minimizing an acyclic FSA is O(E). This
data structure is called a trie.

(c) Jacob Eisenstein 2014-2015. Work in progress.

9.1. FSAS FOR MORPHOLOGY 65

Operations We’ve now talked about three operations: union, determinization
and minimization. Other important operations are:

intersection : only accept strings in both FSAs

negation only accept strings not accepted by FSA M

concatenation . accept strings of the form s = [s1s2], where s1 ∈M1 and s2 ∈M2

FSAs are closed under all these operations, meaning that resulting automaton
is still an FSA (and therefore still defines a regular language).

9.1 FSAs for Morphology
Now for some morphology. Suppose that we want to write a program that accepts
words that could possibly be constructed in accordance with English derivational
morphology, but none of the impossible ones:

• grace, graceful, gracefully

• disgrace, disgraceful, disgracefully, ...

• Google,Googler,Googleology,...

• *gracelyful, *disungracefully, ...

We could just make a list, and then take the union of the list using ε-transitions.
The list would get very long, and it would not account for productivity (our

ability to make new words like antiwordificationist). So let’s try to use finite state
machines instead. Our FSA will have to encode rules about morpheme ordering,
called morphotactics.

Let’s start with some examples:

• grace: q0 →stem q1

• dis-grace: q0 →prefix q1 →stem q2

• grace-ful: q0 →stem q1 →suffix q2

• dis-grace-ful: q0 →prefix q1 →stem q2 →suffix q3

Can we generalize these examples?

(c) Jacob Eisenstein 2014-2015. Work in progress.

66 CHAPTER 9. FINITE-STATE AUTOMATA

Figure 9.1: I can’t find the attribution for this figure right now, sorry! I think it’s
either from Julia Hockenmaier’s slides, or from Jurafsky and Martin (2009).

• This example abstracts away important details, like why wordificate is pre-
ferred to *wordifycate. But this rule is part of English orthography (spelling),
not morphology. “Two-level morphology” is an approach to integrating
such orthographic transformations in a finite-state framework (Karttunen
and Beesley, 2001).

• It also misses a key point: sometimes we have choices, and not all choices
are considered to be equally good by fluent speakers.

– Google counts:

∗ superfast: 70M; ultrafast: 16M; hyperfast: 350K; megafast: 87K
∗ suckitude: 426K; suckiness: 378K
∗ nonobvious: 1.1M; unobvious: 826K; disobvious: 5K

– Rather than asking whether a word is acceptable, we might like to ask
how acceptable it is.

– But finite state acceptors gives us no way to express preferences among
technically valid choices.

– We’ll need to augment the formalism for this.

(c) Jacob Eisenstein 2014-2015. Work in progress.

9.2. WEIGHTED FINITE STATE AUTOMATA 67

9.2 Weighted Finite State Automata
A weighted finite-state automaton M = 〈Q,Σ, π, ξ, δ〉 consists of:

• A finite set of states Q = {q0, q1, . . . , qn}

• A finite alphabet Σ of input symbols

• Initial weight function, π : Q→ R

• Final weight function ξ : Q→ R

• A transition function δ : Q× Σ×Q→ R

We have added a weight function that scores every possible transition.

• We can score any path through the WFSA by the sum of the weights.

• Arcs that we don’t draw have infinite cost.

• The shortest-path algorithm can find the minimum-cost path for accepting a
given string in O(V log V + E).

Applications of WFSAs

We can use WFSAs to score derivational morphology as suggested above. But
let’s start with a simpler example:

Edit distance . We can build an edit distance machine for any word. Here’s one
way to do this (there are others):

• Charge 0 for “correct” symbols and rightward moves

• Charge 1 for self-transitions (insertions)

• Charge 1 for rightward epsilon transitions (deletions)

• Charge 2 for “incorrect” symbols and rightward moves (substitutions)

• Charge∞ for everything else

The total edit distance is the sum of costs across the best path through machine.

(c) Jacob Eisenstein 2014-2015. Work in progress.

68 CHAPTER 9. FINITE-STATE AUTOMATA

Figure 9.2: From (Knight and May, 2009)

Probabilistic models For probabilistic models, we make the path costs equal to
the likelihood:

δ(q1, s, q2) = p(s, q2 | q1) (9.1)

This enables probabilistic models, such as N-gram language models.

• A unigram language model is just one state, with V edges.

• A bigram language model will have V states, with V 2 edges.

Knight and May (2009) show how to do an interpolated bigram/unigram lan-
guage model using a WFSA. (Last year I wrote a note that I had found a better
way, with only V + 3 states rather than 2V + 4. But now I can’t find my solution!)

• Recall that an interpolated bigram language model is

p̂(v|u) = λp2(v|u) + (1− λ)p1(v), (9.2)

with p̂ indicating the interpolated probability, p2 indicating the bigram prob-
ability, and p1 indicating the unigram probability.

• Unlike the basic n-gram language models, our interpolated model has non-
determinism: do we choose the bigram context or the unigram context?

• What should happen to the scores as we encounter a non-deterministic choice?

(c) Jacob Eisenstein 2014-2015. Work in progress.

9.3. SEMIRINGS 69

• For a sequence a,b,a, we want the final path score to be

ψ(a,b,a) =(λp2(a|∗) + (1− λ)p1(a))

× (λp2(b|a) + (1− λ)p1(a))

× (λP2(b|a) + (1− λ)P (b))

• So we could multiply along each step, and add probabilities across non-
deterministic choices.

• With log-probabilities, we would add along each step, and use the log sum,
log(ea + eb), to compute the score for non-deterministic branchings.

9.3 Semirings
We have now seen three examples: an acceptor for derivational morphology, and
weighted acceptors for edit distance and language modeling. Several things are
different across these examples.

• Scoring

– In the derivational morphology FSA, we wanted a boolean “score”: is
the input a valid word or not?

– In the edit distance WFSA, we wanted a numerical (integer) score, with
lower being better.

– In the interpolated language model, we wanted a numerical (real) score,
with higher being better.

• Nondeterminism

– In the derivational morphology FSA, we accept if there is any path to a
terminating state.

– In the edit distance WFSA, we want the score of the single best path.

– In the interpolated language model, we want to sum over non-deterministic
choices.

• How can we combine all of these possibilities into a single formalism? The
answer is semiring notation.

(c) Jacob Eisenstein 2014-2015. Work in progress.

70 CHAPTER 9. FINITE-STATE AUTOMATA

Formal definition

A semiring is a system (K,⊕,⊗, 0, 1)

• K is the set of possible values, e.g. {R+ ∪∞}, the non-negative reals union
with infinity

• ⊕ is an addition operator

• ⊗ is a multiplication operator

• 0 is the additive identity

• 1 is the multiplicative identity

A semiring must meet the following requirements:

• (a⊕ b)⊕ c = a⊕ (b⊕ c), (0⊕ a) = a, a⊕ b = b⊕ a

• (a⊗ b)⊗ c = a⊗ (b⊗ c), a⊗ 1 = 1⊗ a = a

• a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

• a⊗ 0 = 0⊗ a = 0

Semirings of interest :

Name K ⊕ ⊗ 0 1 Applications
Boolean {0, 1} ∨ ∧ 0 1 identical to an unweighted

FSA
Probability R+ + × 0 1 sum of probabilities of all

paths
Log-probability R ∪ −∞∪∞ ⊕log + −∞ 0 log marginal probability
Tropical R ∪ −∞∪∞ min + ∞ 0 best single path

where ⊕log(a, b) is defined as log(ea + eb).
Semirings allow us to compute a more general notion of the “shortest path”

for a WFSA.

• Our initial score is 1

• When we take a step, we use ⊗ to combine the score for the step with the
running total.

(c) Jacob Eisenstein 2014-2015. Work in progress.

9.3. SEMIRINGS 71

• When nondeterminism lets us take multiple possible steps, we combine their
scores using ⊕.

Example Let’s see how this works out for our language model example.

score({a, b, a}) = 1⊗ (λ⊗ P2(a|∗)⊕ (1− λ)⊗ P1(a))

⊗ (λ⊗ P2(b|a)⊕ (1− λ)⊗ P1(b))

⊗ (λ⊗ P2(a|b)⊕ (1− λ)⊗ P1(a))

Now if we plug in the probability semiring, we get

score({a, b, a}) = 1× (λP2(a|∗) + (1− λ)P1(a))

× (λP2(b|a) + (1− λ)P1(b))

× (λP2(a|b) + (1− λ)P1(a))

But if we plug in the log probability semiring, we get

score({a, b, a}) = 0 + log (exp(λ+ logP2(a|∗)) + exp((1− λ) + logP1(a)))

+ log (exp(λ+ logP2(b|a)) + exp((1− λ) + logP1(b)))

+ log (exp(λ+ logP2(a|b)) + exp((1− λ) + logP1(a)))

• The score of the input will the sum of probabilities across all paths that suc-
cessfully process the input.

• What happens if we use the tropical semiring?

Software There are mature software toolkits for working with finite state ma-
chines. OpenFST is a C++ package which I have had some experience with; it’s
fast and relatively well-documented. XFST and Carmel are other options.

(c) Jacob Eisenstein 2014-2015. Work in progress.

Bibliography

Bender, E. M. (2013). Linguistic Fundamentals for Natural Language Processing: 100
Essentials from Morphology and Syntax, volume 6 of Synthesis Lectures on Human
Language Technologies. Morgan & Claypool Publishers.

Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D. (1996). A maximum entropy
approach to natural language processing. Computational linguistics, 22(1):39–71.

Bottou, L. (1998). Online learning and stochastic approximations. On-line learning
in neural networks, 17:9.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press, New York, NY, USA.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery, 2(2):121–167.

Church, K. W. (2000). Empirical estimates of adaptation: the chance of two Norie-
gas is closer to p/2 than p2. In Proceedings of the 18th conference on Computational
linguistics-Volume 1, pages 180–186.

Collins, M. (2002). Discriminative training methods for hidden markov models:
theory and experiments with perceptron algorithms. In Proceedings of Empirical
Methods for Natural Language Processing (EMNLP), pages 1–8.

Collins, M. (2013). Notes on natural language processing. http://www.cs.
columbia.edu/˜mcollins/notes-spring2013.html.

Collins, M. and Duffy, N. (2001). Convolution kernels for natural language. In
Advances in neural information processing systems, pages 625–632.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM.

73

74 BIBLIOGRAPHY

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). On-
line passive-aggressive algorithms. The Journal of Machine Learning Research,
7:551–585.

Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for multi-
class problems. The Journal of Machine Learning Research, 3:951–991.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine Learning Re-
search, 12:2121–2159.

Dyer, C. (2014). Notes on adagrad. www.ark.cs.cmu.edu/cdyer/adagrad.
pdf.

Figueiredo, M., Graça, J., Martins, A., Almeida, M., and Coelho, L. P. (2013).
LXMLS lab guide. http://lxmls.it.pt/2013/guide.pdf.

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using the per-
ceptron algorithm. Machine learning, 37(3):277–296.

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., and Tibshirani, R.
(2009). The elements of statistical learning, volume 2. Springer.

Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic infor-
mation density. Cognitive psychology, 61(1):23–62.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing (2nd Edition)
(Prentice Hall Series in Artificial Intelligence). Prentice Hall, 2 edition.

Karttunen, L. and Beesley, K. R. (2001). A short history of two-level morphology.
ESSLLI-2001 Special Event titled Twenty Years of Finite-State Morphology.

Knight, K. and May, J. (2009). Applications of weighted automata in natural lan-
guage processing. In Handbook of Weighted Automata, pages 571–596. Springer.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language
processing. MIT press.

(c) Jacob Eisenstein 2014-2015. Work in progress.

BIBLIOGRAPHY 75

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Cernocky, J. (2011). Strategies
for training large scale neural network language models. In Automatic Speech
Recognition and Understanding (ASRU), 2011 IEEE Workshop on, pages 196–201.
IEEE.

Mnih, A. and Hinton, G. E. (2008). A scalable hierarchical distributed language
model. In Neural Information Processing Systems (NIPS), pages 1081–1088.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-state transducers in
speech recognition. Computer Speech & Language, 16(1):69–88.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Nemirovski, A. and Yudin, D. (1978). On Cezari’s convergence of the steepest
descent method for approximating saddle points of convex-concave functions.
Soviet Math. Dokl., 19.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. (2000). Text classification
from labeled and unlabeled documents using em. Machine learning, 39(2-3):103–
134.

Pereira, F. (2000). Formal grammar and information theory: together again? Philo-
sophical Transactions of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 358(1769):1239–1253.

Roark, B., Saraclar, M., and Collins, M. (2007). Discriminative¡ i¿ n¡/i¿-gram lan-
guage modeling. Computer Speech & Language, 21(2):373–392.

Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical lan-
guage modelling. Computer Speech & Language, 10(3):187–228.

Saul, L. and Pereira, F. (1997). Aggregate and mixed-order markov models for
statistical language processing. In emnlp.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In
Proceedings of the international conference on new methods in language processing,
volume 12, pages 44–49. Manchester, UK.

Shwartz, S. S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal estimated sub-
GrAdient SOlver for SVM. In Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 807–814.

(c) Jacob Eisenstein 2014-2015. Work in progress.

76 BIBLIOGRAPHY

Sra, S., Nowozin, S., and Wright, S. J. (2012). Optimization for machine learning. MIT
Press.

Tausczik, Y. R. and Pennebaker, J. W. (2010). The psychological meaning of words:
Liwc and computerized text analysis methods. Journal of Language and Social
Psychology, 29(1):24–54.

Teh, Y. W. (2006). A hierarchical bayesian language model based on pitman-yor
processes. In Proceedings of the Association for Computational Linguistics (ACL),
pages 985–992.

Zelenko, D., Aone, C., and Richardella, A. (2003). Kernel methods for relation
extraction. The Journal of Machine Learning Research, 3:1083–1106.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic
gradient descent algorithms. In Proceedings of the twenty-first international confer-
ence on Machine learning, page 116. ACM.

(c) Jacob Eisenstein 2014-2015. Work in progress.

