-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest_flow_latent_ddp.py
263 lines (235 loc) · 11.8 KB
/
test_flow_latent_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import math
import os
import torch
import torch.distributed as dist
from diffusers.models import AutoencoderKL
from models import create_network
from PIL import Image
from pytorch_fid.fid_score import calculate_fid_given_paths
from sampler.random_util import get_generator
from test_flow_latent import FIXER_SOLVER, sample_from_model, sample_from_model_with_fixed_step_solver
from tqdm import tqdm
def main(args):
torch.backends.cuda.matmul.allow_tf32 = True # True: fast but may lead to some small numerical differences
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
# seed = args.seed * dist.get_world_size() + rank
seed = args.seed + rank
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
if args.dataset == "cifar10":
real_img_dir = "pytorch_fid/cifar10_train_stat.npy"
elif args.dataset == "celeba_256":
real_img_dir = "pytorch_fid/celebahq_stat.npy"
elif args.dataset == "lsun_church":
real_img_dir = "pytorch_fid/lsun_church_stat.npy"
elif args.dataset == "ffhq_256":
real_img_dir = "pytorch_fid/ffhq_stat.npy"
elif args.dataset == "lsun_bedroom":
real_img_dir = "pytorch_fid/lsun_bedroom_stat.npy"
elif args.dataset in ["latent_imagenet_256", "imagenet_256"]:
real_img_dir = "pytorch_fid/imagenet_stat.npy"
else:
real_img_dir = args.real_img_dir
to_range_0_1 = lambda x: (x + 1.0) / 2.0
model = create_network(args).to(device)
# model = nn.parallel.DistributedDataParallel(model, device_ids=[device])
first_stage_model = AutoencoderKL.from_pretrained(args.pretrained_autoencoder_ckpt).to(device)
ckpt = torch.load("./saved_info/latent_flow/{}/{}/model_{}.pth".format(args.dataset, args.exp, args.epoch_id))
print("Finish loading model")
# loading weights from ddp in single gpu
for key in list(ckpt.keys()):
ckpt[key[7:]] = ckpt.pop(key)
model.load_state_dict(ckpt, strict=True)
model.eval()
del ckpt
save_dir = "./generated_samples/{}/exp{}_ep{}_m{}".format(args.dataset, args.exp, args.epoch_id, args.method)
# save_dir = "./generated_samples/{}".format(args.dataset)
if args.method in FIXER_SOLVER:
save_dir += "_s{}".format(args.num_steps)
if args.cfg_scale > 1.0:
save_dir += "_cfg{}".format(args.cfg_scale)
if rank == 0 and not os.path.exists(save_dir):
os.makedirs(save_dir)
# seed generator
# seed should be aligned with rank
generator = get_generator(args.generator, args.n_sample, seed)
def run_sampling(num_samples, generator):
x = generator.randn(num_samples, 4, args.image_size // 8, args.image_size // 8).to(device)
if args.num_classes in [None, 1]:
model_kwargs = {}
else:
y = generator.randint(0, args.num_classes, (num_samples,), device=device)
# Setup classifier-free guidance:
if args.cfg_scale > 1.0:
x = torch.cat([x, x], 0)
y_null = (
torch.tensor([args.num_classes] * num_samples, device=device)
if "DiT" in args.model_type
else torch.zeros_like(y)
)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale)
else:
model_kwargs = dict(y=y)
if not args.use_karras_samplers:
fake_sample = sample_from_model(model, x, model_kwargs, args)[-1]
else:
fake_sample = sample_from_model_with_fixed_step_solver(model, x, model_kwargs, generator, args)
if args.cfg_scale > 1.0:
fake_sample, _ = fake_sample.chunk(2, dim=0) # Remove null class samples
fake_image = first_stage_model.decode(fake_sample / args.scale_factor).sample
return fake_image
print("Compute fid")
dist.barrier()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.batch_size
global_batch_size = n * dist.get_world_size()
total_samples = int(math.ceil(args.n_sample / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
iters_needed = int(samples_needed_this_gpu // n)
pbar = range(iters_needed)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for i in pbar:
with torch.no_grad():
fake_image = run_sampling(args.batch_size, generator)
fake_image = (
(torch.clamp(to_range_0_1(fake_image), 0, 1) * 255.0)
.permute(0, 2, 3, 1)
.to("cpu", dtype=torch.uint8)
.numpy()
)
for j, x in enumerate(fake_image):
index = j * dist.get_world_size() + rank + total
Image.fromarray(x).save(f"{save_dir}/{index}.jpg")
# torchvision.utils.save_image(x, '{}/{}.jpg'.format(save_dir, index))
if rank == 0:
print("generating batch ", i)
total += global_batch_size
# make sure all processes have finished
dist.barrier()
if rank == 0:
paths = [save_dir, real_img_dir]
kwargs = {"batch_size": 200, "device": device, "dims": 2048}
fid = calculate_fid_given_paths(paths=paths, **kwargs)
print("FID = {}".format(fid))
with open(args.output_log, "a") as f:
f.write("Epoch = {}, FID = {}, cfg_scale = {}\n".format(args.epoch_id, fid, args.cfg_scale))
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser("flow-matching parameters")
parser.add_argument(
"--generator",
type=str,
default="determ",
help="type of seed generator",
choices=["dummy", "determ", "determ-indiv"],
)
parser.add_argument("--seed", type=int, default=42, help="seed used for initialization")
parser.add_argument("--compute_fid", action="store_true", default=False, help="whether or not compute FID")
parser.add_argument("--use_origin_adm", action="store_true", default=False, help="whether or not compute FID")
parser.add_argument("--compute_nfe", action="store_true", default=False, help="whether or not compute NFE")
parser.add_argument("--measure_time", action="store_true", default=False, help="wheter or not measure time")
parser.add_argument("--epoch_id", type=int, default=1000)
parser.add_argument(
"--model_type",
type=str,
default="adm",
help="model_type",
choices=["adm", "ncsn++", "ddpm++", "DiT-B/2", "DiT-L/2", "DiT-XL/2"],
)
parser.add_argument("--image_size", type=int, default=32, help="size of image")
parser.add_argument("--f", type=int, default=8, help="downsample rate of input image by the autoencoder")
parser.add_argument("--scale_factor", type=float, default=0.18215, help="size of image")
parser.add_argument("--num_in_channels", type=int, default=3, help="in channel image")
parser.add_argument("--num_out_channels", type=int, default=3, help="in channel image")
parser.add_argument("--nf", type=int, default=256, help="channel of image")
parser.add_argument("--n_sample", type=int, default=50000, help="number of sampled images")
parser.add_argument("--centered", action="store_false", default=True, help="-1,1 scale")
parser.add_argument("--resamp_with_conv", type=bool, default=True)
parser.add_argument("--num_res_blocks", type=int, default=2, help="number of resnet blocks per scale")
parser.add_argument("--num_heads", type=int, default=4, help="number of head")
parser.add_argument("--num_head_upsample", type=int, default=-1, help="number of head upsample")
parser.add_argument("--num_head_channels", type=int, default=-1, help="number of head channels")
parser.add_argument(
"--attn_resolutions", nargs="+", type=int, default=(16,), help="resolution of applying attention"
)
parser.add_argument("--ch_mult", nargs="+", type=int, default=(1, 2, 2, 2), help="channel mult")
parser.add_argument("--label_dim", type=int, default=0, help="label dimension, 0 if unconditional")
parser.add_argument("--augment_dim", type=int, default=0, help="dimension of augmented label, 0 if not used")
parser.add_argument("--dropout", type=float, default=0.0, help="drop-out rate")
parser.add_argument("--num_classes", type=int, default=None, help="num classes")
parser.add_argument(
"--label_dropout",
type=float,
default=0.0,
help="Dropout probability of class labels for classifier-free guidance",
)
parser.add_argument("--cfg_scale", type=float, default=1.0, help="Scale for classifier-free guidance")
# parser.add_argument("--use_scale_shift_norm", type=bool, default=True)
# parser.add_argument("--resblock_updown", type=bool, default=False)
# parser.add_argument("--use_new_attention_order", type=bool, default=False)
parser.add_argument("--pretrained_autoencoder_ckpt", type=str, default="stabilityai/sd-vae-ft-mse")
parser.add_argument("--output_log", type=str, default="")
#######################################
parser.add_argument("--exp", default="experiment_cifar_default", help="name of experiment")
parser.add_argument(
"--real_img_dir",
default="./pytorch_fid/cifar10_train_stat.npy",
help="directory to real images for FID computation",
)
parser.add_argument("--dataset", default="cifar10", help="name of dataset")
parser.add_argument("--num_steps", type=int, default=40)
parser.add_argument("--batch_size", type=int, default=200, help="sample generating batch size")
# sampling argument
parser.add_argument("--use_karras_samplers", action="store_true", default=False)
parser.add_argument("--atol", type=float, default=1e-5, help="absolute tolerance error")
parser.add_argument("--rtol", type=float, default=1e-5, help="absolute tolerance error")
parser.add_argument(
"--method",
type=str,
default="dopri5",
help="solver_method",
choices=[
"dopri5",
"dopri8",
"adaptive_heun",
"bosh3",
"euler",
"midpoint",
"rk4",
"heun",
"multistep",
"stochastic",
"dpm",
],
)
parser.add_argument("--step_size", type=float, default=0.01, help="step_size")
parser.add_argument("--perturb", action="store_true", default=False)
# ddp
parser.add_argument("--num_proc_node", type=int, default=1, help="The number of nodes in multi node env.")
parser.add_argument("--num_process_per_node", type=int, default=1, help="number of gpus")
parser.add_argument("--node_rank", type=int, default=0, help="The index of node.")
parser.add_argument("--local_rank", type=int, default=0, help="rank of process in the node")
parser.add_argument("--master_address", type=str, default="127.0.0.1", help="address for master")
parser.add_argument("--master_port", type=str, default="6000", help="port for master")
args = parser.parse_args()
main(args)