-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathapp.py
67 lines (52 loc) · 2.07 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from skimage import io
from tensorflow.keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
model =tf.keras.models.load_model('PlantDNet.h5',compile=False)
def model_predict(img_path, model):
img = image.load_img(img_path, grayscale=False, target_size=(64, 64))
show_img = image.load_img(img_path, grayscale=False, target_size=(64, 64))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = np.array(x, 'float32')
x /= 255
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html') #render home page
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
print(preds[0])
disease_class = ['Pepper__bell___Bacterial_spot', 'Pepper__bell___healthy', 'Potato___Early_blight',
'Potato___Late_blight', 'Potato___healthy', 'Tomato_Bacterial_spot', 'Tomato_Early_blight',
'Tomato_Late_blight', 'Tomato_Leaf_Mold', 'Tomato_Septoria_leaf_spot',
'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato__Target_Spot',
'Tomato__Tomato_YellowLeaf__Curl_Virus', 'Tomato__Tomato_mosaic_virus', 'Tomato_healthy']
a = preds[0]
ind=np.argmax(a)
result=disease_class[ind]
return result
return None
if __name__ == '__main__':
app.run(debug=True)