-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_fusionnet_axial.py
213 lines (176 loc) · 6.18 KB
/
train_fusionnet_axial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Training a IFT network
import os
import sys
import time
from tqdm import tqdm, trange
import scipy.io as scio
import random
import torch
import pdb
import torch.nn as nn
from torch.optim import Adam
from torch.autograd import Variable
import utils
from kornia.filters.sobel import sobel
from net import NestFuse_light2_nodense, Fusion_network, RFN_decoder
from checkpoint import load_checkpoint
from args_fusion import args
import pytorch_msssim
#from vit_model import VisionTransformer
import warnings
warnings.filterwarnings("ignore")
EPSILON = 1e-5
def main():
original_imgs_path, _ = utils.list_images(args.dataset_ir)
train_num = 80000
original_imgs_path = original_imgs_path[:train_num]
random.shuffle(original_imgs_path)
# True - RGB , False - gray
img_flag = False
alpha_list = [700]
w_all_list = [[6.0, 3.0]]
for w_w in w_all_list:
w1, w2 = w_w
for alpha in alpha_list:
train(original_imgs_path, img_flag, alpha, w1, w2)
def train(original_imgs_path, img_flag, alpha, w1, w2):
batch_size = args.batch_size
# load network model
nc = 1
input_nc = nc
output_nc = nc
#nb_filter = [64, 128, 256, 512]
nb_filter = [64, 112, 160, 208]
f_type = 'res'
with torch.no_grad():
deepsupervision = False
nest_model = NestFuse_light2_nodense(nb_filter, input_nc, output_nc, deepsupervision)
model_path = args.resume_nestfuse
# load auto-encoder network
print('Resuming, initializing auto-encoder using weight from {}.'.format(model_path))
nest_model.load_state_dict(torch.load(model_path))
nest_model.cuda()
nest_model.eval()
# fusion network
fusion_model = Fusion_network(nb_filter, f_type)
fusion_model.cuda()
fusion_model.train()
if args.resume_fusion_model is not None:
print('Resuming, initializing fusion net using weight from {}.'.format(args.resume_fusion_model))
fusion_model.load_state_dict(torch.load(args.resume_fusion_model))
optimizer = Adam(fusion_model.parameters(), args.lr)
mse_loss = torch.nn.MSELoss()
ssim_loss = pytorch_msssim.msssim
tbar = trange(args.epochs)
print('Start training.....')
mode = args.mode
print(mode)
# creating save path
temp_path_model = os.path.join(args.save_fusion_model)
temp_path_loss = os.path.join(args.save_loss_dir)
if os.path.exists(temp_path_model) is False:
os.mkdir(temp_path_model)
if os.path.exists(temp_path_loss) is False:
os.mkdir(temp_path_loss)
temp_path_model_w = os.path.join(args.save_fusion_model, str(w1), mode)
temp_path_loss_w = os.path.join(args.save_loss_dir, str(w1))
if os.path.exists(temp_path_model_w) is False:
os.mkdir(temp_path_model_w)
if os.path.exists(temp_path_loss_w) is False:
os.mkdir(temp_path_loss_w)
Loss_feature = []
Loss_ssim = []
Loss_all = []
count_loss = 0
all_ssim_loss = 0.
all_fea_loss = 0.
sobel_loss = nn.L1Loss()
for e in tbar:
print('Epoch %d.....' % e)
# load training database
image_set_ir, batches = utils.load_dataset(original_imgs_path, batch_size)
count = 0
nest_model.cuda()
#trans_model.cuda()
fusion_model.cuda()
for batch in range(batches):
image_paths_ir = image_set_ir[batch * batch_size:(batch * batch_size + batch_size)]
img_ir = utils.get_train_images(image_paths_ir, height=args.HEIGHT, width=args.WIDTH, flag=img_flag)
image_paths_vi = [x.replace('lwir', 'visible') for x in image_paths_ir]
img_vi = utils.get_train_images(image_paths_vi, height=args.HEIGHT, width=args.WIDTH, flag=img_flag)
count += 1
optimizer.zero_grad()
img_ir = Variable(img_ir, requires_grad=False)
img_vi = Variable(img_vi, requires_grad=False)
img_ir = img_ir.cuda()
img_vi = img_vi.cuda()
# encoder
en_ir = nest_model.encoder(img_ir)
en_vi = nest_model.encoder(img_vi)
# fusion
f = fusion_model(en_ir, en_vi)
# decoder
outputs = nest_model.decoder_eval(f)
# resolution loss: between fusion image and visible image
x_ir = Variable(img_ir.data.clone(), requires_grad=False)
x_vi = Variable(img_vi.data.clone(), requires_grad=False)
######################### LOSS FUNCTION #########################
loss1_value = 0.
loss2_value = 0.
for output in outputs:
output = (output - torch.min(output)) / (torch.max(output) - torch.min(output) + EPSILON)
output = output * 255
# ---------------------- LOSS IMAGES ------------------------------------
# detail loss
ssim_loss_temp2 = ssim_loss(output, x_vi, normalize=True)
loss1_value += alpha * (1 - ssim_loss_temp2)
# feature loss
g2_ir_fea = en_ir
g2_vi_fea = en_vi
g2_fuse_fea = f
w_ir = [w1, w1, w1, w1]
w_vi = [w2, w2, w2, w2]
w_fea = [1, 10, 100, 1000]
for ii in range(4):
g2_ir_temp = g2_ir_fea[ii]
g2_vi_temp = g2_vi_fea[ii]
g2_fuse_temp = g2_fuse_fea[ii]
(bt, cht, ht, wt) = g2_ir_temp.size()
loss2_value += w_fea[ii]*mse_loss(g2_fuse_temp, w_ir[ii]*g2_ir_temp + w_vi[ii]*g2_vi_temp)
loss1_value /= len(outputs)
loss2_value /= len(outputs)
total_loss = loss1_value + loss2_value
total_loss.backward()
optimizer.step()
all_fea_loss += loss2_value.item() #
all_ssim_loss += loss1_value.item() #
if (batch + 1) % args.log_interval == 0:
mesg = "{}\t Alpha: {} \tW-IR: {}\tEpoch {}:\t[{}/{}]\t ssim loss: {:.6f}\t fea loss: {:.6f}\t total: {:.6f}".format(
time.ctime(), alpha, w1, e + 1, count, batches,
all_ssim_loss / args.log_interval,
all_fea_loss / args.log_interval,
(all_fea_loss + all_ssim_loss) / args.log_interval
)
tbar.set_description(mesg)
Loss_ssim.append( all_ssim_loss / args.log_interval)
Loss_feature.append(all_fea_loss / args.log_interval)
Loss_all.append((all_fea_loss + all_ssim_loss) / args.log_interval)
count_loss = count_loss + 1
all_ssim_loss = 0.
all_fea_loss = 0.
# save model
save_model_filename = mode + ".model"
save_model_path = os.path.join(temp_path_model_w, save_model_filename)
torch.save(fusion_model.state_dict(), save_model_path)
print("\nDone, trained model saved at", save_model_path)
def check_paths(args):
try:
if not os.path.exists(args.vgg_model_dir):
os.makedirs(args.vgg_model_dir)
if not os.path.exists(args.save_model_dir):
os.makedirs(args.save_model_dir)
except OSError as e:
print(e)
sys.exit(1)
if __name__ == "__main__":
main()