-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
129 lines (111 loc) · 4.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import json
import mlflow
import tempfile
import os
import wandb
import hydra
from omegaconf import DictConfig
_steps = [
"download",
"basic_cleaning",
"data_check",
"data_split",
"train_random_forest",
# NOTE: We do not include this in the steps so it is not run by mistake.
# You first need to promote a model export to "prod" before you can run this,
# then you need to run this step explicitly
# "test_regression_model"
]
# This automatically reads in the configuration
@hydra.main(config_name='config')
def go(config: DictConfig):
# Setup the wandb experiment. All runs will be grouped under this name
os.environ["WANDB_PROJECT"] = config["main"]["project_name"]
os.environ["WANDB_RUN_GROUP"] = config["main"]["experiment_name"]
# Steps to execute
steps_par = config['main']['steps']
active_steps = steps_par.split(",") if steps_par != "all" else _steps
# Move to a temporary directory
with tempfile.TemporaryDirectory() as tmp_dir:
# get root path of the mlflow project
root_path = hydra.utils.get_original_cwd()
if "download" in active_steps:
# Download file and load in W&B
_ = mlflow.run(
os.path.join(root_path, "components/get_data"),
"main",
parameters={
"sample": config["etl"]["sample"],
"artifact_name": "sample.csv",
"artifact_type": "raw_data",
"artifact_description": "Raw file as downloaded"
},
)
if "basic_cleaning" in active_steps:
_ = mlflow.run(
os.path.join(root_path, "src/basic_cleaning"),
"main",
parameters={
"input_artifact": "sample.csv:latest",
"output_artifact": "cleaned_sample.csv",
"output_type": "preprocessed_data",
"output_description": "Data with preprocessing applied",
"min_price": 10,
"max_price": 350
},
)
if "data_check" in active_steps:
_ = mlflow.run(
os.path.join(root_path, "src/data_check"),
"main",
parameters={
"csv": "cleaned_sample.csv:latest",
"ref": "cleaned_sample.csv:reference",
"kl_threshold": config['data_check']['kl_threshold'],
"min_price": 10,
"max_price": 350
},
)
if "data_split" in active_steps:
_ = mlflow.run(
os.path.join(root_path, "components/train_val_test_split"),
"main",
parameters={
"input": "cleaned_sample.csv:latest",
"test_size": config['modeling']['test_size'],
'random_seed': config['modeling']['random_seed'],
'stratify_by': config['modeling']['stratify_by']
},
)
if "train_random_forest" in active_steps:
# NOTE: we need to serialize the random forest configuration into JSON
rf_config = os.path.abspath("rf_config.json")
with open(rf_config, "w+") as fp:
json.dump(dict(config["modeling"]["random_forest"].items()), fp) # DO NOT TOUCH
# NOTE: use the rf_config we just created as the rf_config
# parameter for the train_random_forest
# step
_ = mlflow.run(
os.path.join(root_path, "src/train_random_forest"),
"main",
parameters={
"trainval_artifact": "trainval_data.csv:latest",
"val_size": config['modeling']['val_size'],
"random_seed": config['modeling']['random_seed'],
"stratify_by": config['modeling']['stratify_by'],
"rf_config": rf_config,
"max_tfidf_features": config['modeling']['max_tfidf_features'], # NOQA:E501
"output_artifact": "random_forest_export"
},
)
if "test_regression_model" in active_steps:
_ = mlflow.run(
os.path.join(root_path, "components/test_regression_model"),
"main",
parameters={
"mlflow_model": "random_forest_export:prod",
"test_dataset": "test_data.csv:latest",
},
)
if __name__ == "__main__":
go()