-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test.py
209 lines (147 loc) · 6.29 KB
/
main_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
'''
Aum Sri Sai Ram
ABAW4 for MTL
Code to get predictions on test set by loading the checkpoints.
Authors: Darshan Gera, Badveeti Naveen Siva Kumar, Bobbili Veerendra Raj Kumar, Dr. S. Balasubramanian, SSSIHL
Date: 20-07-2022
Email: darshangera@sssihl.edu.in
'''
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import math
from datetime import datetime
import pytz
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torch.nn.functional as F
from models.backbone import ResNet_18
import dataset.abaw as dataset
from losses import classification_loss_func, regression_loss_func, cross_entropy_loss, CCCLoss, symmetric_kl_div
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig, EXPR_metric, VA_metric, AU_metric
parser = argparse.ArgumentParser(description='Test Code')
# Optimization options
parser.add_argument('--batch-size', default=256, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.0005, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--num_workers', type=int, default=16,
help='num of workers to use')
# Miscs
parser.add_argument('--manualSeed', type=int, default=5, help='manual seed')
#Device options
parser.add_argument('--gpu', default='0,1,2', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
#Data
parser.add_argument('--test-root', type=str, default='../data/Affwild2/cropped_aligned_2022_MTL_test',
help="root path to train data directory")
parser.add_argument('--label-test', default='../data/Affwild2/MTL_Challenge_test_set_release.txt', type=str, help='')
parser.add_argument('--chkpath', default='', type=str, help='path to checkpoint on which to run the test set')
parser.add_argument('--num_exp_classes', type=int, default=8, help='number of expression classes')
parser.add_argument('--num_aus', type=int, default=12, help='number of facial action units')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
np.random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
torch.cuda.manual_seed_all(args.manualSeed)
def main():
if not os.path.isdir(args.out):
mkdir_p(args.out)
# Data
print(f'==> Preparing DB')
mean=[0.485, 0.456, 0.406]
std =[0.229, 0.224, 0.225]
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
test_set = dataset.Dataset_ABAW_test(args.test_root, args.label_test, transform=transform_test)
test_loader = data.DataLoader(test_set, batch_size=256, shuffle=False, num_workers=args.num_workers)
print('Test dataset size: ', len(test_set))
# Model
print("==> creating ResNet-18")
def create_model(ema=False):
model = ResNet_18()
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(chkpath)
model.load_state_dict(checkpoint['state_dict'], strict=True)
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
cudnn.benchmark = True
#Validating the model
test(test_loader, model, use_cuda, mode='Test Stats')#3 <- (4)
def test(dataloader, model, use_cuda, mode):
batch_time = AverageMeter()
data_time = AverageMeter()
top1 = AverageMeter()
end = time.time()
args.validate_iteration = int(len(dataloader.dataset)/args.batch_size)
print('\n')
outpath = (os.path.join(args.out, 'Preds_with_ssl_reweights_{}'.format(datetime.now(pytz.timezone('Asia/Kolkata')).strftime('%d-%m-%Y_%H-%M-%S'))))
fout = open(outpath, 'w')
print('image,valence,arousal,expression,aus', file=fout)
bar = Bar('Test', max=args.validate_iteration)
labeled_val_iter = iter(dataloader)
model.eval()
with torch.no_grad():
for batch_idx in range(args.validate_iteration):
try:
inputs, img_path = labeled_val_iter.next()
except:
labeled_val_iter = iter(dataloader)
inputs, img_path = labeled_val_iter.next()
# measure data loading time
data_time.update(time.time() - end)
if mode == 'Train Stats':
inputs = inputs[0]
batch_size = inputs.size(0)
if use_cuda:
inputs = inputs.cuda()
outputs = model(inputs)
outputs_exp = F.softmax(outputs['EXPR'] , dim=-1).argmax(-1).float()
outputs_au = (torch.sigmoid(outputs['AU']) > 0.5).float()
outputs_va = torch.clamp(outputs['VA'], min=-1.0, max=1.0)
for image in range(batch_size):
out_v = '{0:.3f}'.format(outputs_va[image,0])
out_a = '{0:.3f}'.format(outputs_va[image,1])
out_exp = str(int(outputs_exp[image]))
out_au = ''
for i in range(11):
out_au += str(int(outputs_au[image][i]))
out_au += (',')
out_au += str(int(outputs_au[image][11]))
s = (img_path[image] + ',' + out_v + ',' + out_a + ','+ out_exp + ','+ out_au)
print(s, file=fout)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '(({batch}/{size})Total:{total:}'.format(
batch=batch_idx + 1,
size=args.validate_iteration,
total=bar.elapsed_td
)
bar.next()
bar.finish()
fout.close()
if __name__ == '__main__':
main()