Vakiti
/
Analysis-of-Climate-Risk-Index-CRI-and-its-relevance-in-assessing-nations-vulnerabilities
Public
forked from shanyachaubey/CRI_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcri_data.csv
We can make this file beautiful and searchable if this error is corrected: Illegal quoting in line 2.
124 lines (75 loc) · 2.37 KB
/
cri_data.csv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
title: "WebscrapingCostofLivingIndex"
author: "Shanya Chaubey"
date: "2023-02-28"
output: html_document
---
```{r setup, include=FALSE, echo = TRUE}
knitr::opts_knit$set(root.dir = 'C:\\Users\\chaub\\Documents\\CU_Boulder\\Spring 2023\\STAT 5000')
```
```{r}
library(tidyverse)
library(dplyr)
library(tidyr)
library(compare)
```
```{r}
data <- read_csv('climate-risk-index-1.csv')
head(data)
columns <- as.list(colnames(data))
columns
```
```{r}
data <- data %>% select(-c('cartodb_id','the_geom', 'the_geom_webmercator', 'rw_country_name'))
head(data)
names(data)[names(data) == 'rw_country_code'] <- 'country_code'
head(data)
```
```{r}
pop_density <- read_csv('population_density.csv')
head(pop_density)
#unit = people per sq. km of land area
pop_density <- pop_density %>% select(c('Country Code','2019 [YR2019]'))
head(pop_density)
pop_density$`2019 [YR2019]` <- as.numeric(pop_density$`2019 [YR2019]`)
head(pop_density)
colnames(pop_density)<- c('country_code', 'pop_den')
new_pop_den <- pop_density %>% distinct()
#change column name of Country Code to country_code
```
```{r}
gdp_p_c <- read_csv('gdp_per_capita.csv')
head(gdp_p_c)
#unit-current US$
gdp_p_c <- gdp_p_c%>% select(c('Country Code', '2019 [YR2019]'))
head(gdp_p_c)
gdp_p_c$`2019 [YR2019]` <- as.numeric(gdp_p_c$`2019 [YR2019]`)
head(gdp_p_c)
#change column name of Country Code to country_code
colnames(gdp_p_c) <- c('country_code', 'GDP_per_capita')
head(gdp_p_c)
```
```{r}
epi_2020 <- read_csv('2020_epi.csv')
head(epi_2020)
epi_score_2020<- epi_2020 %>% select(c( 'iso', 'EPI.new'))
head(epi_score_2020)
epi_2018 <- read_csv('2018_epi.csv')
head(epi_2018)
epi_score_2018<- epi_2018 %>% select(c( 'iso', 'EPI.current'))
head(epi_score_2018)
epi_2019 <- inner_join(epi_score_2018, epi_score_2020, by= "iso")
head(epi_2019)
print('Missing value in dataframe:')
sum(is.na(epi_2019))
epi_2019 <- epi_2019 %>% mutate(EPI_new = (EPI.current+EPI.new)/2) %>% select(c('iso', 'EPI_new'))
head(epi_2019)
colnames(epi_2019) <- c('country_code', 'EPI_score')
head(epi_2019)
```
```{r}
data_1 <- inner_join(data, pop_density, by = 'country_code')
data_2 <- inner_join(data_1, gdp_p_c, by = 'country_code')
data_3 <- inner_join(data_2, epi_2019, by = 'country_code', )
head(data_3)
```