-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmr_train.py
385 lines (306 loc) · 12.3 KB
/
mr_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import cv2
import random
import os.path as osp
import fastvqa.models as models
import fastvqa.datasets as datasets
import argparse
from scipy.stats import spearmanr, pearsonr
from scipy.stats.stats import kendalltau as kendallr
import numpy as np
from time import time
from tqdm import tqdm
import pickle
import math
import wandb
import yaml
from thop import profile
def rank_loss(y_pred, y):
ranking_loss = torch.nn.functional.relu(
(y_pred - y_pred.t()) * torch.sign((y.t() - y))
)
scale = 1 + torch.max(ranking_loss)
return (
torch.sum(ranking_loss) / y_pred.shape[0] / (y_pred.shape[0] - 1) / scale
).float()
def plcc_loss(y_pred, y):
sigma_hat, m_hat = torch.std_mean(y_pred, unbiased=False)
y_pred = (y_pred - m_hat) / (sigma_hat + 1e-8)
sigma, m = torch.std_mean(y, unbiased=False)
y = (y - m) / (sigma + 1e-8)
loss0 = torch.nn.functional.mse_loss(y_pred, y) / 4
rho = torch.mean(y_pred * y)
loss1 = torch.nn.functional.mse_loss(rho * y_pred, y) / 4
return ((loss0 + loss1) / 2).float()
def rescaled_l2_loss(y_pred, y):
y_pred_rs = (y_pred - y_pred.mean()) / y_pred.std()
y_rs = (y - y.mean()) / (y.std() + eps)
return torch.nn.functional.mse_loss(y_pred_rs, y_rs)
def rplcc_loss(y_pred, y, eps=1e-8):
## Literally (1 - PLCC) / 2
cov = torch.cov(y_pred, y)
std = (torch.std(y_pred) + eps) * (torch.std(y) + eps)
return (1 - cov / std) / 2
def self_similarity_loss(f, f_hat):
return 1 - torch.nn.functional.cosine_similarity(f.mean((-3,-2,-1)), f_hat.detach().mean(-3,-2,-1), dim=1).mean()
def contrastive_similarity_loss(f, f_hat, eps=1e-8):
intra_similarity = torch.nn.functional.cosine_similarity(f.mean((-3,-2,-1)), f_hat.detach().mean(-3,-2,-1), dim=1).mean()
cross_similarity = torch.nn.functional.cosine_similarity(f.mean((-3,-2,-1)), f_hat.detach().mean(-3,-2,-1), dim=0).mean()
return (1 - intra_similarity) / (1 - cross_similarity + eps)
def rescale(pr, gt=None):
if gt is None:
pr = (pr - np.mean(pr)) / np.std(pr)
else:
pr = ((pr - np.mean(pr)) / np.std(pr)) * np.std(gt) + np.mean(gt)
return pr
sample_types=["resize", "fragments", "crop", "arp_resize", "arp_fragments"]
def finetune_epoch(ft_loader, model, model_ema, optimizer, scheduler, device, epoch=-1):
model.train()
for i, data in enumerate(tqdm(ft_loader, desc=f"Training in epoch {epoch}")):
optimizer.zero_grad()
video = {}
for key in sample_types:
if key in data:
video[key] = data[key].to(device)
y = data["gt_label"].float().detach().to(device).unsqueeze(-1)
frame_inds = data["frame_inds"]
y_pred = model(video, inference=False).mean((-3, -2, -1))
p_loss, r_loss = plcc_loss(y_pred, y), rank_loss(y_pred, y)
loss = p_loss + 0.1 * r_loss
wandb.log(
{
"train/plcc_loss": p_loss.item(),
"train/rank_loss": r_loss.item(),
"train/"
"train/total_loss": loss.item(),
}
)
loss.backward()
optimizer.step()
scheduler.step()
if model_ema is not None:
model_params = dict(model.named_parameters())
model_ema_params = dict(model_ema.named_parameters())
for k in model_params.keys():
model_ema_params[k].data.mul_(0.999).add_(
model_params[k].data, alpha=1 - 0.999
)
model.eval()
def profile_inference(inf_set, model, device):
video = {}
data = inf_set[0]
for key in sample_types:
if key in data:
video[key] = data[key].to(device).unsqueeze(0)
with torch.no_grad():
flops, params = profile(model, (video, ))
print(f"The FLOps of the Variant is {flops/1e9:.1f}G, with Params {params/1e6:.2f}M.")
def inference_set(inf_loader, model, device, best_, save_model=False, suffix='s', save_name="divide"):
results = []
best_s, best_p, best_k, best_r = best_
for i, data in enumerate(tqdm(inf_loader, desc="Validating")):
result = dict()
video = {}
for key in sample_types:
if key in data:
video[key] = data[key].to(device)#.unsqueeze(0)
with torch.no_grad():
result["pr_labels"] = model(video).cpu().numpy()
result["gt_label"] = data["gt_label"].item()
# result['frame_inds'] = data['frame_inds']
# del data
results.append(result)
## generate the demo video for video quality localization
gt_labels = [r["gt_label"] for r in results]
pr_labels = [np.mean(r["pr_labels"][:]) for r in results]
pr_labels = rescale(pr_labels, gt_labels)
s = spearmanr(gt_labels, pr_labels)[0]
p = pearsonr(gt_labels, pr_labels)[0]
k = kendallr(gt_labels, pr_labels)[0]
r = np.sqrt(((gt_labels - pr_labels) ** 2).mean())
wandb.log({f"val/SRCC-{suffix}": s, f"val/PLCC-{suffix}": p, f"val/KRCC-{suffix}": k, f"val/RMSE-{suffix}": r})
if s + p > best_s + best_p and save_model:
state_dict = model.state_dict()
torch.save(
{
"state_dict": state_dict,
"validation_results": best_,
},
f"pretrained_weights/{save_name}_{suffix}_dev_v0.0.pth",
)
best_s, best_p, best_k, best_r = (
max(best_s, s),
max(best_p, p),
max(best_k, k),
min(best_r, r),
)
wandb.log(
{
f"val/best_SRCC-{suffix}": best_s,
f"val/best_PLCC-{suffix}": best_p,
f"val/best_KRCC-{suffix}": best_k,
f"val/best_RMSE-{suffix}": best_r,
}
)
print(
f"For {len(inf_loader)} videos, \nthe accuracy of the model: [{suffix}] is as follows:\n SROCC: {s:.4f} best: {best_s:.4f} \n PLCC: {p:.4f} best: {best_p:.4f} \n KROCC: {k:.4f} best: {best_k:.4f} \n RMSE: {r:.4f} best: {best_r:.4f}."
)
return best_s, best_p, best_k, best_r
# torch.save(results, f'{args.save_dir}/results_{dataset.lower()}_s{32}*{32}_ens{args.famount}.pkl')
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-o", "--opt", type=str, default="./options/divide/add.yml", help="the option file"
)
args = parser.parse_args()
with open(args.opt, "r") as f:
opt = yaml.safe_load(f)
print(opt)
## adaptively choose the device
device = "cuda" if torch.cuda.is_available() else "cpu"
## defining model and loading checkpoint
bests_ = []
model = getattr(models, opt["model"]["type"])(**opt["model"]["args"]).to(device)
train_dataset = getattr(datasets, opt["data"]["train"]["type"])(opt["data"]["train"]["args"])
val_dataset = getattr(datasets, opt["data"]["val"]["type"])(opt["data"]["val"]["args"])
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt["batch_size"], num_workers=opt["num_workers"], shuffle=True,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, num_workers=opt["num_workers"], pin_memory=True,
)
run = wandb.init(
project=opt["wandb"]["project_name"],
name=opt["name"],
reinit=True,
)
state_dict = torch.load(opt["load_path"], map_location=device)
if "state_dict" in state_dict:
### migrate training weights from mmaction
state_dict = state_dict["state_dict"]
from collections import OrderedDict
i_state_dict = OrderedDict()
for key in state_dict.keys():
if "cls" in key:
tkey = key.replace("cls", "vqa")
elif "backbone" in key:
i_state_dict["fragments_"+key] = state_dict[key]
i_state_dict["resize_"+key] = state_dict[key]
else:
i_state_dict[key] = state_dict[key]
t_state_dict = model.state_dict()
for key, value in t_state_dict.items():
if key in i_state_dict and i_state_dict[key].shape != value.shape:
i_state_dict.pop(key)
model.load_state_dict(i_state_dict, strict=False)
print(model)
if opt["ema"]:
from copy import deepcopy
model_ema = deepcopy(model)
else:
model_ema = None
profile_inference(val_dataset, model, device)
# finetune the model
print(len(val_loader), len(train_loader))
param_groups=[]
for key, value in dict(model.named_children()).items():
if "backbone" in key:
param_groups += [{"params": value.parameters(), "lr": opt["optimizer"]["lr"] * opt["optimizer"]["backbone_lr_mult"]}]
else:
param_groups += [{"params": value.parameters(), "lr": opt["optimizer"]["lr"]}]
optimizer = torch.optim.AdamW(lr=opt["optimizer"]["lr"], params=param_groups,
weight_decay=opt["optimizer"]["wd"],
)
warmup_iter = int(opt["warmup_epochs"] * len(train_loader))
max_iter = int((opt["num_epochs"] + opt["l_num_epochs"]) * len(train_loader))
lr_lambda = (
lambda cur_iter: cur_iter / warmup_iter
if cur_iter <= warmup_iter
else 0.5 * (1 + math.cos(math.pi * (cur_iter - warmup_iter) / max_iter))
)
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, lr_lambda=lr_lambda,
)
best_ = -1, -1, -1, 1000
best_n = best_
for key, value in dict(model.named_children()).items():
if "backbone" in key:
for param in value.parameters():
param.requires_grad = False
for epoch in range(opt["l_num_epochs"]):
print(f"Linear Epoch {epoch}:")
finetune_epoch(
train_loader, model, model_ema, optimizer, scheduler, device, epoch
)
best_ = inference_set(
val_loader,
model_ema if model_ema is not None else model,
device, best_, save_model=opt["save_model"], save_name=opt["name"],
)
if model_ema is not None:
best_n = inference_set(
val_loader,
model,
device, best_n, save_model=opt["save_model"], save_name=opt["name"],
suffix = 'n',
)
else:
best_n = best_
print(
f"""For the linear transfer process on with {len(val_loader)} videos,
the best validation accuracy of the model-s is as follows:
SROCC: {best_[0]:.4f}
PLCC: {best_[1]:.4f}
KROCC: {best_[2]:.4f}
RMSE: {best_[3]:.4f}."""
)
print(
f"""For the linear transfer process on with {len(val_loader)} videos,
the best validation accuracy of the model-n is as follows:
SROCC: {best_n[0]:.4f}
PLCC: {best_n[1]:.4f}
KROCC: {best_n[2]:.4f}
RMSE: {best_n[3]:.4f}."""
)
for key, value in dict(model.named_children()).items():
if "backbone" in key:
for param in value.parameters():
param.requires_grad = True
for epoch in range(opt["num_epochs"]):
print(f"Finetune Epoch {epoch}:")
finetune_epoch(
train_loader, model, model_ema, optimizer, scheduler, device, epoch
)
best_ = inference_set(
val_loader,
model_ema if model_ema is not None else model,
device, best_, save_model=opt["save_model"], save_name=opt["name"],
)
if model_ema is not None:
best_n = inference_set(
val_loader,
model,
device, best_n, save_model=opt["save_model"],
suffix='n', save_name=opt["name"],
)
else:
best_n = best_
print(
f"""For the fintuning process on with {len(val_loader)} videos,
the best validation accuracy of the model-s is as follows:
SROCC: {best_[0]:.4f}
PLCC: {best_[1]:.4f}
KROCC: {best_[2]:.4f}
RMSE: {best_[3]:.4f}."""
)
print(
f"""For the linear transfer process on with {len(val_loader)} videos,
the best validation accuracy of the model-n is as follows:
SROCC: {best_n[0]:.4f}
PLCC: {best_n[1]:.4f}
KROCC: {best_n[2]:.4f}
RMSE: {best_n[3]:.4f}."""
)
run.finish()
if __name__ == "__main__":
main()