-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_mtt.py
214 lines (179 loc) · 10 KB
/
evaluate_mtt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import copy
import numpy as np
import os
import torch
import torch.nn as nn
import wandb
from utils import epoch, evaluate_synset, get_dataset, get_eval_pool, get_network, ParamDiffAug
parser = argparse.ArgumentParser(description='Parameter Processing')
parser.add_argument('--dataset', type=str, default='CIFAR10', help='dataset')
parser.add_argument('--subset', type=str, default='imagenette', help='ImageNet subset. This only does anything when --dataset=ImageNet')
parser.add_argument('--model', type=str, default='ConvNet', help='model')
parser.add_argument('--ipc', type=int, default=1, help='image(s) per class')
parser.add_argument('--eval_mode', type=str, default='S',
help='eval_mode, check utils.py for more info')
parser.add_argument('--num_eval', type=int, default=5, help='how many networks to evaluate on')
parser.add_argument('--epoch_eval_train', type=int, default=1000, help='epochs to train a model with synthetic data')
# training parameters
parser.add_argument('--lr_img', type=float, default=1000, help='learning rate for updating synthetic images')
parser.add_argument('--lr_lr', type=float, default=1e-05, help='learning rate for updating... learning rate')
parser.add_argument('--lr_teacher', type=float, default=0.01, help='initialization for synthetic learning rate')
parser.add_argument('--batch_real', type=int, default=256, help='batch size for real data')
parser.add_argument('--batch_syn', type=int, default=None, help='should only use this if you run out of VRAM')
parser.add_argument('--batch_train', type=int, default=256, help='batch size for training networks')
parser.add_argument('--dsa_strategy', type=str, default='color_crop_cutout_flip_scale_rotate',
help='differentiable Siamese augmentation strategy')
parser.add_argument('--data_path', type=str, default='data', help='dataset path')
parser.add_argument('--save_path', type=str, default='logged_files', help='save path')
parser.add_argument('--expert_epochs', type=int, default=3, help='how many expert epochs the target params are')
parser.add_argument('--syn_steps', type=int, default=20, help='how many steps to take on synthetic data')
parser.add_argument('--max_start_epoch', type=int, default=25, help='max epoch we can start at')
parser.add_argument('--zca', action='store_true', help="do ZCA whitening")
parser.add_argument('--texture', action='store_true', help="will distill textures instead")
# evaluation parameters
parser.add_argument('--num_intervals', type=int, default=2, help='how many intervals to evaluate')
# buffer parameters
parser.add_argument('--num_experts', type=int, default=100, help='training iterations')
parser.add_argument('--mom', type=float, default=0, help='momentum')
parser.add_argument('--l2', type=float, default=0, help='l2 regularization')
parser.add_argument('--save_interval', type=int, default=10)
parser.add_argument('--override_interval_names', type=str, default=None)
parser.add_argument('--override_load_path', type=str, default=None)
parser.add_argument('--buffer_path', type=str, default='buffers')
parser.add_argument('--save_model', action='store_true')
parser.add_argument('--save_model_prefix', type=str, default="model")
args = parser.parse_args()
index = [1,0,2,3,5,4,6,7,9,8,10,11,12,13]
print("CUDNN STATUS: {}".format(torch.backends.cudnn.enabled))
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
args.dsa = True
experiment_name = f'{args.dataset}_{args.model}_{args.eval_mode}_ipc{args.ipc}_it{args.num_intervals}_max{args.max_start_epoch}_syn{args.syn_steps}_real{args.expert_epochs}_img{args.lr_img}_{args.lr_lr}_{args.lr_teacher}'
if args.zca:
experiment_name += '_zca'
if args.override_load_path is not None:
experiment_name = args.override_load_path
wandb.init(sync_tensorboard=False,
project="DatasetDistillation",
job_type="CleanRepo",
config=args,
name=experiment_name,
)
args = type('', (), {})()
# initialize dsa parameters
args.dsa_param = ParamDiffAug()
for key in wandb.config._items:
setattr(args, key, wandb.config._items[key])
# load the dataset
channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader, loader_train_dict, class_map, class_map_inv = get_dataset(args.dataset, args.data_path, args.batch_real, args.subset, args=args)
model_eval_pool = get_eval_pool(args.eval_mode, args.model, args.model)
# initialize the evaluation models
net_eval_pool = {}
expert_dir = args.buffer_path
expert_dir = os.path.join(expert_dir, args.dataset)
if args.dataset == "ImageNet":
expert_dir = os.path.join(expert_dir, args.subset, str(args.res))
if args.dataset in ["CIFAR10", "CIFAR100"] and not args.zca:
expert_dir += "_NO_ZCA"
expert_dir = os.path.join(expert_dir, args.model)
expert_files = []
n = 0
while os.path.exists(os.path.join(expert_dir, "replay_buffer_{}.pt".format(n))):
expert_files.append(os.path.join(expert_dir, "replay_buffer_{}.pt".format(n)))
n += 1
print(expert_files)
import random
file_idx = 0
expert_idx = 0
# random.shuffle(expert_files)
try:
print("loading file {}".format(expert_files[file_idx]))
buffer = torch.load(expert_files[file_idx])
except:
buffer = []
for model_eval in model_eval_pool:
net_eval_pool[model_eval] = []
if model_eval == args.model:
num_eval = args.num_experts
else:
num_eval = args.num_eval
for it_eval in range(num_eval):
net_eval = get_network(model_eval, channel, num_classes, im_size).to(args.device) # get a random model
try:
buffer_ = buffer[0][0]
except:
pass
if len(buffer) > 0:
for b, p in zip(buffer_, net_eval.state_dict().items()):
# load the same weights
p[1].copy_(b.data)
net_eval_pool[model_eval].append(net_eval)
best_acc = {m: 0 for m in model_eval_pool}
best_std = {m: 0 for m in model_eval_pool}
syn_lr = torch.tensor(args.lr_teacher).to(args.device)
''' Evaluate synthetic data '''
for model_eval in model_eval_pool:
print('-------------------------\nEvaluation\nmodel_train = %s, model_eval = %s'%(args.model, model_eval))
print('DSA augmentation strategy: \n', args.dsa_strategy)
print('DSA augmentation parameters: \n', args.dsa_param.__dict__)
if model_eval == args.model:
num_eval = args.num_experts
else:
num_eval = args.num_eval
it = 1
experiment_name = f'{args.dataset}_{args.model}_{args.eval_mode}_ipc{args.ipc}_max{args.max_start_epoch}_syn{args.syn_steps}_real{args.expert_epochs}_img{args.lr_img}_{args.lr_lr}_{args.lr_teacher}'
if args.zca:
experiment_name += '_zca'
if args.override_load_path is not None:
experiment_name = args.override_load_path
max_start_epoch = args.max_start_epoch * it
interval_name = f'interval{it}_epoch{args.max_start_epoch * (it - 1) + 1}-{max_start_epoch}'
syn_lr = torch.load(os.path.join(args.save_path, args.dataset, experiment_name, interval_name, 'syn_lr_best.pt'))
print(syn_lr)
accs_test = []
accs_train = []
for it_eval in range(num_eval):
init_state = None
for it in range(1, args.num_intervals+1):
# load the synthetic data
experiment_name = f'{args.dataset}_{args.model}_{args.eval_mode}_ipc{args.ipc}_max{args.max_start_epoch}_syn{args.syn_steps}_real{args.expert_epochs}_img{args.lr_img}_{args.lr_lr}_{args.lr_teacher}'
if args.zca:
experiment_name += '_zca'
if args.override_load_path is not None:
experiment_name = args.override_load_path
max_start_epoch = args.max_start_epoch * it
interval_name = f'interval{it}_epoch{args.max_start_epoch * (it - 1) + 1}-{max_start_epoch}'
if args.override_interval_names is not None:
interval_name = args.override_interval_names.split(".")[it - 1]
print(f"Load from {os.path.join(args.save_path, args.dataset, experiment_name, interval_name, 'images_best.pt')}")
image_syn = torch.load(os.path.join(args.save_path, args.dataset, experiment_name, interval_name, 'images_best.pt'))
label_syn = torch.load(os.path.join(args.save_path, args.dataset, experiment_name, interval_name, 'labels_best.pt'))
syn_lr = torch.load(os.path.join(args.save_path, args.dataset, experiment_name, interval_name, 'syn_lr_best.pt'))
# syn_lr = torch.tensor(0.01)
net_eval = net_eval_pool[model_eval][it_eval]
eval_labs = label_syn
with torch.no_grad():
image_save = image_syn
image_syn_eval, label_syn_eval = copy.deepcopy(image_save.detach()), copy.deepcopy(eval_labs.detach()) # avoid any unaware modification
args.lr_net = syn_lr.item()
# args.lr_net = syn_lrs[it - 1]
net_eval, acc_train, acc_test, optimizer = evaluate_synset(it_eval, net_eval, image_syn_eval, label_syn_eval, testloader, args, texture=args.texture,
save_model=args.save_model, save_model_prefix=args.save_model_prefix + f"_{it}", stage=it, warmup=0,
return_optimizer=True, init_state=init_state)
init_state = optimizer.state
net_eval_pool[model_eval][it_eval] = net_eval
accs_test.append(acc_test)
accs_train.append(acc_train)
accs_test = np.array(accs_test)
accs_train = np.array(accs_train)
acc_test_mean = np.mean(accs_test)
acc_test_std = np.std(accs_test)
if acc_test_mean > best_acc[model_eval]:
best_acc[model_eval] = acc_test_mean
best_std[model_eval] = acc_test_std
save_this_it = True
print('Evaluate %d random %s, mean = %.4f std = %.4f\n-------------------------'%(len(accs_test), model_eval, acc_test_mean, acc_test_std))
wandb.log({'Accuracy/{}'.format(model_eval): acc_test_mean}, step=it)
wandb.log({'Max_Accuracy/{}'.format(model_eval): best_acc[model_eval]}, step=it)
wandb.log({'Std/{}'.format(model_eval): acc_test_std}, step=it)
wandb.log({'Max_Std/{}'.format(model_eval): best_std[model_eval]}, step=it)