-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsga_l2o_train_gan copy.py
422 lines (366 loc) · 20.7 KB
/
sga_l2o_train_gan copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import abc
import functools
from operator import gt
import torch
import argparse
import numpy as np
from losses import *
from utils import generate_game_sample, load_games_list, construct_obs, init_stats, init_weight, detach, random_unit
from torch import nn
from networks import RNNOptimizer
import tree
import wandb
import copy
def slow_ema_update(slow_optimizer, optimizer, beta):
for sp, p in zip(slow_optimizer.parameters(), optimizer.parameters()):
sp.data = sp.data * beta + p.data * (1 - beta)
sigma = 0.1
skel = np.array([
[ 1.50, 1.50],
[ 1.50, 0.50],
[ 1.50, -0.50],
[ 1.50, -1.50],
[ 0.50, 1.50],
[ 0.50, 0.50],
[ 0.50, -0.50],
[ 0.50, -1.50],
[-1.50, 1.50],
[-1.50, 0.50],
[-1.50, -0.50],
[-1.50, -1.50],
[-0.50, 1.50],
[-0.50, 0.50],
[-0.50, -0.50],
[-0.50, -1.50],
])
bs = 256
temp = np.tile(skel, (bs // 16 + 1,1))
mus = temp[0:bs,:]
def get_gradient(function, param):
grad = torch.autograd.grad(function, param, create_graph=True)[0]
return grad
def main(args):
wandb.init(project="l2o_game", name=args.wandb_name)
wandb.config.update(args)
torch.manual_seed(args.seed)
cl = [50, 100, 200, 500, 1000, 2000, 5000, 10000]
formula = args.formula.split(',')
levels = args.feat_level.split(',')
optimizer = RNNOptimizer(True, args.n_hidden, 10, False, n_features=len(formula) * (len(levels)), no_tanh=args.no_tanh).cuda()
meta_optimizer = torch.optim.Adam(optimizer.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(meta_optimizer, args.epochs // 3)
# eval_game_list = load_games_list(args.eval_game_list, args.n_player)
best_eval_result = 1000
best_slow_eval_result = 1000
total_step = 0
if args.cl:
args.inner_iterations = cl[0]
if args.use_slow_optimizer:
slow_optimizer = RNNOptimizer(True, args.n_hidden, 10, False, n_features=len(formula) * (len(levels)), no_tanh=args.no_tanh).cuda()
slow_meta_optimizer = torch.optim.Adam(slow_optimizer.parameters(), lr=1e-3)
slow_scheduler = torch.optim.lr_scheduler.StepLR(slow_meta_optimizer, args.epochs // 3)
initialized = False
for epoch in range(args.epochs):
loss = loss_gan()
epoch_w = [torch.randn(384 * (384 + 1) * 5 + 384 * 2 + 2 + 65 * 384).cuda(), torch.randn(384 * (384 + 1) * 5 + 3 * 384 + 384 + 1).cuda()]
gen_shapes = [(384, 64), (384, 384), (384, 384), (384, 384), (384, 384),(384, 384), (2, 384)]
dis_shapes = [(384, 2), (384, 384), (384, 384), (384, 384), (384, 384),(384, 384), (1, 384)]
cur_sz = 0
for shape in gen_shapes:
epoch_w[0][cur_sz:cur_sz + shape[0] * shape[1]] = torch.randn(shape[0] * shape[1]) / np.sqrt(shape[0])
cur_sz += shape[0] * shape[1]
epoch_w[0][cur_sz:cur_sz + shape[0]] = 0
cur_sz += shape[0]
cur_sz = 0
for shape in dis_shapes:
epoch_w[1][cur_sz:cur_sz + shape[0] * shape[1]] = torch.randn(shape[0] * shape[1]) / np.sqrt(shape[0])
cur_sz += shape[0] * shape[1]
epoch_w[1][cur_sz:cur_sz + shape[0]] = 0
cur_sz += shape[0]
for w in epoch_w:
w.requires_grad = True
w.retain_grad()
hiddens = [[torch.zeros(epoch_w[0].numel() + epoch_w[1].numel(), args.n_hidden).cuda()]]
cells = [[torch.zeros(epoch_w[0].numel() + epoch_w[1].numel(), args.n_hidden).cuda()]]
meta_loss = 0
if (not initialized) and (epoch >= args.epochs * args.slow_optimizer_start) and (args.use_slow_optimizer):
slow_optimizer.load_state_dict(copy.deepcopy(optimizer.state_dict()))
initialized = True
# print(f"init location for fast: {epoch_w}")
if args.use_slow_optimizer and initialized:
slow_hiddens = [[torch.zeros(epoch_w[0].numel() + epoch_w[1].numel(), args.n_hidden).cuda()]]
slow_cells = [[torch.zeros(epoch_w[0].numel() + epoch_w[1].numel(), args.n_hidden).cuda()]]
if args.batch_size == 1:
slow_epoch_w = init_weight()
for w, sw in zip(epoch_w, slow_epoch_w):
sw.data.copy_(w.data)
sw.requires_grad = True
sw.retain_grad()
else:
slow_epoch_ws = []
for _ in range(args.batch_size):
slow_epoch_w = init_weight()
for w, sw in zip(epoch_ws[_], slow_epoch_w):
sw.data.copy_(w.data)
sw.requires_grad = True
sw.retain_grad()
slow_epoch_ws.append(slow_epoch_w)
for iterations in range(args.inner_iterations):
z = torch.cuda.FloatTensor(np.random.normal(0, 1, (bs, 64)))
real_data = torch.from_numpy(mus + sigma* np.random.randn(bs, 2)*.2).cuda().float()
# kde(real_data.cpu()[:, 0], real_data.cpu()[:, 1], 0, [-2, 2, -2, 2])
# assert False
loss_partial_gen = functools.partial(loss, real_data=real_data, z=z, mode='gen')
loss_partial_dis = functools.partial(loss, real_data=real_data, z=z, mode='dis')
print(f'Step: {iterations}', loss_partial_gen(torch.cat([epoch_w[0], epoch_w[1]], 0)), loss_partial_dis(torch.cat([epoch_w[0], epoch_w[1]], 0)))
weights = torch.cat([epoch_w[0], epoch_w[1]], 0)
# print(loss_partial_dis(torch.cat([epoch_w[0], epoch_w[1]], 0)))
grad_L = [[torch.autograd.grad(loss_partial_gen(weights), epoch_w[0], create_graph=True)[0], torch.autograd.grad(loss_partial_dis(weights), epoch_w[0], create_graph=True)[0]], [torch.autograd.grad(loss_partial_gen(weights), epoch_w[1], create_graph=True)[0], torch.autograd.grad(loss_partial_dis(weights), epoch_w[1], create_graph=True)[0]]]
grads = torch.cat([grad_L[0][0],grad_L[1][1]])
ham = torch.dot(grads, grads.detach())
H_t_xi = torch.cat([get_gradient(ham, epoch_w[i]) for i in range(2)]).detach()
H_xi = torch.cat([get_gradient(sum([torch.dot(grad_L[j][i], grad_L[j][j].detach())
for j in range(2)]), epoch_w[i]) for i in range(2)]).detach()
Sg = (H_xi + H_t_xi) / 2
Ag = (H_t_xi - H_xi) / 2
obs = [grads.view(-1, 1), Ag.view(-1, 1), Sg.view(-1, 1)]
obs = torch.cat(obs, 1).detach()
if iterations == 0:
stats = init_stats(obs, feat_levels=levels)
obs, stats = construct_obs(obs, levels, stats, iterations)
for i in range(obs.shape[1]):
wandb.log({"obs_" + str(i): torch.norm(obs[:, i])}, step=total_step)
new_hs = []
new_cs = []
if args.reg_1:
H = torch.sum(grads ** 2) / 2
dh = []
for g, w in zip(grads, epoch_w):
dh.append(torch.autograd.grad(H, w, retain_graph=True)[0])
dh = torch.stack(dh)
loss_reg_1 = (grads.view(1,-1) @ dh.view(-1,1)).sum()
wandb.log({"step_loss_reg_1": loss_reg_1}, step=total_step)
elif args.reg_2:
H = torch.sum(grads ** 2) / 2
dh = []
for g, w in zip(grads, epoch_w):
dh.append(torch.autograd.grad(H, w, retain_graph=True)[0])
dh = torch.cat(dh).view(-1, 1)
reg_2s = torch.sign((grads.view(1,-1) @ dh.view(-1,1)).sum())
update, scale, new_h, new_c = optimizer(obs, hiddens[0], cells[0])
# print(iterations, epoch_w, update)
if args.batch_size == 1:
epoch_w[0] = epoch_w[0] - (update[:epoch_w[0].shape[0],0] * grads[:epoch_w[0].shape[0]].detach() - update[:epoch_w[0].shape[0],1] * Ag[:epoch_w[0].shape[0]] - update[:epoch_w[0].shape[0],2] * Sg[:epoch_w[0].shape[0]]) * scale[0] * 1e-4
# epoch_w[0] = epoch_w[0] - (update[:epoch_w[0].shape[0],0] * grads[:epoch_w[0].shape[0]]) * scale[0] * 1e-4
epoch_w[1] = epoch_w[1] - (update[epoch_w[0].shape[0]:,0] * grads[epoch_w[0].shape[0]:].detach() - update[epoch_w[0].shape[0]:,1] * Ag[epoch_w[0].shape[0]:] - update[epoch_w[0].shape[0]:,2] * Sg[epoch_w[0].shape[0]:]) * scale[0] * 1e-4
# epoch_w[1] = epoch_w[1] - (update[epoch_w[0].shape[0]:,0] * grads[epoch_w[0].shape[0]:]) * scale[0] * 1e-4
else:
for idx, epoch_w in enumerate(epoch_ws):
for j in range(args.n_player):
para_idx = j + args.n_player * idx
epoch_w[j] = epoch_w[j] - (update[para_idx, 0] * grads[para_idx] - update[para_idx, 1] * Ag[para_idx] - update[para_idx, 2] * Sg[para_idx]) * scale[0]
# epoch_w[1] = epoch_w[1] - (update[1 + args.n_player * idx, 0] * grads[1] - update[1,1] * Ag[1] - update[1,2] * Sg[1]) * scale[1]
new_hs.append(new_h)
new_cs.append(new_c)
# print(f"updated location for fast: {epoch_w}")
hiddens = new_hs
cells = new_cs
if args.normalize_meta_loss:
step_meta_loss = torch.sum(grads ** 2) / torch.sum(init_grads ** 2)
else:
if not args.reg_2:
step_meta_loss = 1 / 2 * torch.sum(grads ** 2) / args.batch_size
else:
step_meta_loss = torch.sum((grads ** 2).view(args.batch_size, -1) * reg_2s.view(args.batch_size, -1), 1)
step_meta_loss = step_meta_loss[step_meta_loss > -100]
step_meta_loss = torch.mean(step_meta_loss) / 2
total_step = total_step + 1
wandb.log({"step_meta_loss": step_meta_loss}, step=total_step)
meta_loss += step_meta_loss
if args.reg_1:
if loss_reg_1 < 0:
meta_loss -= loss_reg_1 * args.reg_coef
if (meta_loss > 100) or (meta_loss < -1e5):
break
elif (iterations + 1) % args.unroll_length == 0:
meta_loss.backward()
torch.nn.utils.clip_grad_norm_(optimizer.parameters(), 1)
meta_optimizer.step()
optimizer.zero_grad()
print(iterations + 1, f'meta loss: {meta_loss.item()}', f'current loss: {torch.sum(grads ** 2)}')
wandb.log({"meta_loss": meta_loss}, step=total_step)
print(f'Step: {iterations}', loss_partial_gen(weights), loss_partial_dis(weights))
meta_loss = 0
hiddens = tree.map_structure(detach, hiddens)
cells = tree.map_structure(detach, cells)
epoch_w = tree.map_structure(detach, epoch_w)
del grad_L
del H_t_xi
del H_xi
if args.use_slow_optimizer and initialized:
if iterations == 0 or iterations % args.slow_optimizer_freq == 0:
if iterations > 0:
slow_meta_loss = 0
if args.batch_size == 1:
for sw, w in zip(slow_epoch_w, epoch_w):
slow_meta_loss += torch.sum((sw - w.data) ** 2)
else:
for sws, ws in zip(slow_epoch_ws, epoch_ws):
for sw, w in zip(sws, ws):
slow_meta_loss += torch.sum((sw - w.data) ** 2) / args.batch_size
if slow_meta_loss < 1e5:
slow_meta_loss.backward()
torch.nn.utils.clip_grad_norm_(slow_optimizer.parameters(), 1)
slow_meta_optimizer.step()
slow_optimizer.zero_grad()
print(iterations + 1, f'slow meta loss: {slow_meta_loss.item()}')
if args.use_slow_ema:
slow_ema_update(slow_optimizer, optimizer, args.slow_ema)
else:
# print(slow_grads)
# print(slow_S, slow_A, slow_Ag, slow_Sg)
# print(slow_obs)
# assert False
print("Overflow.")
slow_optimizer.zero_grad()
wandb.log({"slow_meta_loss": slow_meta_loss}, step=total_step)
slow_meta_loss = 0
slow_hiddens = tree.map_structure(detach, slow_hiddens)
slow_cells = tree.map_structure(detach, slow_cells)
slow_epoch_w = tree.map_structure(detach, slow_epoch_w)
slow_grads = grad(loss, slow_epoch_w) # (np * na) x 1
slow_S, slow_A = decompose(grad(loss, slow_epoch_w), slow_epoch_w) # (np * na) x (np * na)
slow_Ag = torch.transpose(slow_A, 0, 1) @ slow_grads
slow_Sg = slow_S @ slow_grads
slow_obs = [slow_grads.view(-1, 1), slow_Ag.view(-1, 1), slow_Sg.view(-1, 1)]
# slow_obs = [slow_grads.view(-1, 1)]
slow_obs = torch.cat(slow_obs, 1)
slow_stats = init_stats(slow_obs, feat_levels=levels)
slow_obs, slow_stats = construct_obs(slow_obs, levels, slow_stats, iterations // args.slow_optimizer_freq)
slow_new_hs = []
slow_new_cs = []
slow_update, slow_scale, slow_new_h, slow_new_c = slow_optimizer(slow_obs, slow_hiddens[0], slow_cells[0])
if args.batch_size == 1:
slow_epoch_w[0] = slow_epoch_w[0] - (slow_update[0,0] * slow_grads[0] - slow_update[0,1] * slow_Ag[0] - slow_update[0,2] * slow_Sg[0]) * slow_scale[0]
slow_epoch_w[1] = slow_epoch_w[1] - (slow_update[1,0] * slow_grads[1] - slow_update[1,1] * slow_Ag[1] - slow_update[1,2] * slow_Sg[1]) * slow_scale[1]
else:
for idx, slow_epoch_w in enumerate(slow_epoch_ws):
for j in range(args.n_player):
para_idx = j + args.n_player * idx
slow_epoch_w[j] = slow_epoch_w[j] - (slow_update[para_idx, 0] * slow_grads[para_idx] - slow_update[para_idx, 1] * slow_Ag[para_idx] - slow_update[para_idx, 2] * slow_Sg[para_idx]) * slow_scale[0]
print(f"updated location for slow: {slow_epoch_w}")
slow_new_hs.append(slow_new_h)
slow_new_cs.append(slow_new_c)
slow_hiddens = slow_new_hs
slow_cells = slow_new_cs
if (epoch + 1) % 20 == 0:
torch.save({"state_dict": optimizer.state_dict()}, args.output_name)
if args.cl:
try:
args.inner_iterations = cl[cl.index(args.inner_iterations) + 1]
except IndexError:
pass
scheduler.step()
if args.use_slow_optimizer:
slow_scheduler.step()
def evaluate(net, game_list, formula, levels, args, slow=False):
counts = []
for idx, loss_line in enumerate(game_list):
optimizer = RNNOptimizer(True, args.n_hidden, 10, False, n_features=len(formula) * (len(levels)), no_tanh=args.no_tanh).cuda()
optimizer.load_state_dict(net.state_dict())
lrs = []
ws = []
updates = []
grads_ = []
Ags = []
Sgs = []
loss = loss_gan()
ws = []
initial_w = [torch.randn(64 * 64 * 5 + 128).cuda() * 0.1, torch.randn(64 * 64 * 4 + 3 * 64).cuda() * 0.1]
acount = 0
for wi in initial_w:
players_w = wi
ws.append(list(wi))
losses = []
for w in players_w:
w.requires_grad = True
w.retain_grad()
w.cuda()
hiddens = [[torch.zeros(w.numel() * args.n_player, args.n_hidden).cuda()]]
cells = [[torch.zeros(w.numel() * args.n_player, args.n_hidden).cuda()]]
count = 0
while count < 1000:
grads = grad(loss, players_w).cuda()
S, A = decompose(grads, players_w) # (np * na) x (np * na)
Ate = torch.transpose(A, 0, 1) @ grads
Ss = S @ grads
obs = [grads.view(-1, 1), Ate.view(-1, 1), Ss.view(-1, 1)]
# obs = [grads.view(-1, 1)]
obs = torch.cat(obs, 1)
if count == 0:
stats = init_stats(obs, feat_levels=levels)
obs, stats = construct_obs(obs, levels, stats, count)
new_hs = []
new_cs = []
with torch.no_grad():
update, scale, new_h, new_c = optimizer(obs, hiddens[0], cells[0])
updates.append(update)
grads_.append(grads.view(-1) * update[:, 0].view(-1))
Ags.append(Ate.view(-1) * update[:, 1].view(-1))
Sgs.append(Ss.view(-1) * update[:, 2].view(-1))
losses.extend(loss(players_w))
ws.append(list(players_w))
if not slow:
players_w[0] = players_w[0] - (grads[0] * update[0,0] - Ate[0] * update[0, 1] - Ss[0] * update[0, 2]) * scale[0]
players_w[1] = players_w[1] - (grads[1] * update[1,0] - Ate[1] * update[1, 1] - Ss[1] * update[1, 2]) * scale[1]
else:
players_w[0] = players_w[0] - (grads[0] * update[0,0] - Ate[0] * update[0, 1] - Ss[0] * update[0, 2]) * scale[0]
players_w[1] = players_w[1] - (grads[1] * update[1,0] - Ate[1] * update[1, 1] - Ss[1] * update[1, 2]) * scale[1]
new_hs.append(new_h)
new_cs.append(new_c)
hiddens = new_hs
cells = new_cs
if torch.mean(torch.norm(torch.stack(grads_[-10:]), dim=1)) < 0.001:
break
else:
count += 1
acount += count
counts.append(acount / len(initial_w))
return counts
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--n_player', type=int, default=2)
parser.add_argument('--n_hidden', type=int, default=20)
parser.add_argument('--n_action', type=int, default=1)
parser.add_argument('--reg_1', action='store_true')
parser.add_argument('--reg_2', action='store_true')
parser.add_argument('--reg_coef', type=float, default=10)
parser.add_argument('--formula', type=str, default='grad,S,A')
parser.add_argument('--learnable_scale', action='store_true')
#### Game Type ####
parser.add_argument('--stable', action='store_true')
parser.add_argument('--stable-saddle', action='store_true')
parser.add_argument('--game-distribution', type=str, default='gaussian', choices=['gaussian', 'uniform', 'negative-uniform'])
parser.add_argument('--output-name', type=str, default='optimizer.pkl')
parser.add_argument('--wandb-name', type=str, default='meta-train')
parser.add_argument('--inner-iterations', type=int, default=50)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--feat_level', type=str, default="o,m,0.9")
parser.add_argument('--unroll_length', type=int, default=5)
parser.add_argument('--eval-game-list', type=str, default='stable_game_list_uniform.txt')
parser.add_argument('--cl', action="store_true")
parser.add_argument('--learnable-loss', action='store_true', help='enable learnable loss or not')
parser.add_argument('--use-slow-optimizer', action="store_true", help='enable slow optimizer')
parser.add_argument('--use-slow-ema', action="store_true", help='enable slow ema')
parser.add_argument('--slow-ema', type=float, default=0.95)
parser.add_argument('--slow-optimizer-start', type=float, default=0.1)
parser.add_argument('--normalize-meta-loss', action="store_true", help='enable slow ema')
parser.add_argument('--slow-optimizer-freq', type=int, default=5)
parser.add_argument('--loss-type', type=str, default='mse', choices=('mse', 'cosine'))
parser.add_argument('--init-mode', type=str, default='unit', choices=('unit', 'ball'))
parser.add_argument('--no-tanh', action='store_true')
parser.add_argument('--data-cl', action='store_true')
parser.add_argument('--batch-size', type=int, default=1)
args = parser.parse_args()
main(args)