-
Notifications
You must be signed in to change notification settings - Fork 0
/
sga_l2o_batch.py
132 lines (125 loc) · 5.33 KB
/
sga_l2o_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import abc
import torch
import argparse
import numpy as np
from losses import *
from networks import RNNOptimizer
import matplotlib.pyplot as plt
import tree
from utils import generate_game_sample, load_games_list, construct_obs, init_stats, init_weight, detach, random_unit
parser = argparse.ArgumentParser()
parser.add_argument("--n_player", type=int, default=2)
parser.add_argument("--n_action", type=int, default=1)
parser.add_argument("--n_hidden", type=int, default=16)
parser.add_argument("--lamb", type=float, default=1)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--random-lr', action="store_true")
parser.add_argument('--checkpoint', type=str)
parser.add_argument("--eval_game_list", type=str)
parser.add_argument("--visualize", action="store_true")
parser.add_argument("--print_update", action="store_true")
parser.add_argument("--no-tanh", action="store_true")
parser.add_argument("--learnable_scale", action="store_true")
parser.add_argument("--formula", type=str, default='grad,S,A')
parser.add_argument('--feat_level', type=str, default="o,m,0.9")
parser.add_argument("--direct", action="store_true")
args = parser.parse_args()
from sga_l2o_train import evaluate
from tqdm import tqdm
def main():
torch.manual_seed(args.seed)
eval_game_list = load_games_list(args.eval_game_list, args.n_player)
counts = []
formula = args.formula.split(",")
levels = args.feat_level.split(',')
optimizer = RNNOptimizer(True, args.n_hidden, 10, False, n_features=len(formula) * (len(levels)), no_tanh=args.no_tanh).cuda()
try:
optimizer.load_state_dict(torch.load(args.checkpoint))
except:
optimizer.load_state_dict(torch.load(args.checkpoint)['state_dict'])
# eval_result = evaluate(optimizer, eval_game_list, formula, levels, args)
# print(eval_result)
# print(np.mean(eval_result))
# '''
for idx, loss_line in enumerate(eval_game_list):
optimizer = RNNOptimizer(True, args.n_hidden, 10, False, n_features=len(formula) * (len(levels)), no_tanh=args.no_tanh).cuda()
try:
optimizer.load_state_dict(torch.load(args.checkpoint))
except:
optimizer.load_state_dict(torch.load(args.checkpoint)['state_dict'])
optimizer.eval()
lrs = []
ws = []
updates = []
grads_ = []
Ags = []
Sgs = []
loss, _ = loss_quadratic(1, *list(loss_line))
ws = []
initial_w = [random_unit(2**int(_)) for _ in range(1, 51)]
acount = 0
for wi in initial_w:
players_w = wi
ws.append(list(wi))
losses = []
for w in players_w:
w.requires_grad = True
w.retain_grad()
w.cuda()
hiddens = [[torch.zeros(w.numel() * args.n_player, args.n_hidden).cuda()]]
cells = [[torch.zeros(w.numel() * args.n_player, args.n_hidden).cuda()]]
count = 0
while count < 1000:
grads = grad(loss, players_w)
S, A = decompose(grads, players_w) # (np * na) x (np * na)
Ate = torch.transpose(A, 0, 1) @ grads
Ss = S @ grads
obs = []
if 'grad' in args.formula:
obs.append(grads.view(-1, 1))
if 'A' in args.formula:
obs.append(Ate.view(-1, 1))
if 'S' in args.formula:
obs.append(Ss.view(-1, 1))
obs = torch.cat(obs, 1)
if count == 0:
stats = init_stats(obs, feat_levels=levels)
obs, stats = construct_obs(obs, levels, stats, count)
new_hs = []
new_cs = []
with torch.no_grad():
update, scale, new_h, new_c = optimizer(obs, hiddens[0], cells[0])
updates.append(update)
grads_.append(grads.view(-1) * update[:, 0].view(-1))
Ags.append(Ate.view(-1) * update[:, 1].view(-1))
Sgs.append(Ss.view(-1) * update[:, 2].view(-1))
losses.extend(loss(players_w))
ws.append(list(players_w))
for j in range(2):
if args.direct:
players_w[j] = players_w[j] - update[j, 0]
else:
if 'grad' in args.formula:
players_w[j] = players_w[j] - update[j, 0] * grads[j]
if 'A' in args.formula:
players_w[j] = players_w[j] + update[j, 1] * Ate[j]
if 'S' in args.formula:
players_w[j] = players_w[j] + update[j, 2] * Ss[j]
new_hs.append(new_h)
new_cs.append(new_c)
hiddens = new_hs
cells = new_cs
if torch.mean(torch.norm(torch.stack(grads_[-10:]), dim=1)) < 0.001:
# print(players_w[0].item())
# print(players_w[1].item())
break
else:
count += 1
acount += count
counts.append(acount / len(initial_w))
print(counts)
print(np.mean(counts))
# '''
if __name__ == "__main__":
main()