-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_v2_abl_audio.py
130 lines (111 loc) · 6.63 KB
/
main_v2_abl_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import os
import random
import warnings
import matplotlib.pyplot as plt
import numpy as np
import torch
import loader_v2 as loader
import processor_v2_abl_audio as processor
from os.path import join as j
from config.parse_args import parse_args
warnings.filterwarnings('ignore')
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='Speech to Emotive Gestures')
parser.add_argument('-b', '--base-path', required=True, type=str, help='Root directory of data files')
parser.add_argument('-c', '--config', required=True, is_config_file=True, help='Config file path')
parser.add_argument('--dataset-s2ag', type=str, default='ted_db', metavar='D-S2G',
help='dataset to train and validate speech to emotive gestures (default: ted)')
parser.add_argument('-dap', '--dataset-s2ag-already-processed',
help='Optional. Set to True if dataset has already been processed.' +
'If not, or if you are not sure, set it to False.',
type=str2bool, default=True)
parser.add_argument('--frame-drop', type=int, default=2, metavar='FD',
help='frame down-sample rate (default: 2)')
parser.add_argument('--train-s2ag', type=str2bool, default=True, metavar='T-s2ag',
help='train the s2ag model (default: True)')
parser.add_argument('--use-multiple-gpus', type=str2bool, default=True, metavar='T',
help='use multiple GPUs if available (default: True)')
parser.add_argument('--s2ag-load-last-best', type=str2bool, default=True, metavar='s2ag-LB',
help='load the most recent best model for s2ag (default: True)')
parser.add_argument('--batch-size', type=int, default=512, metavar='B',
help='input batch size for training (default: 32)')
parser.add_argument('--num-worker', type=int, default=4, metavar='W',
help='number of threads? (default: 4)')
parser.add_argument('--s2ag-start-epoch', type=int, default=0, metavar='s2ag-SE',
help='starting epoch of training of s2ag (default: 0)')
parser.add_argument('--s2ag-num-epoch', type=int, default=500, metavar='s2ag-NE',
help='number of epochs to train s2ag (default: 1000)')
# parser.add_argument('--window-length', type=int, default=1, metavar='WL',
# help='max number of past time steps to take as input to transformer decoder (default: 60)')
parser.add_argument('--base-tr', type=float, default=1., metavar='TR',
help='base teacher rate (default: 1.0)')
parser.add_argument('--step', type=list, default=0.05 * np.arange(20), metavar='[S]',
help='fraction of steps when learning rate will be decreased (default: [0.5, 0.75, 0.875])')
parser.add_argument('--lr-s2ag-decay', type=float, default=0.999, metavar='LRD-s2ag',
help='learning rate decay for s2ag (default: 0.999)')
parser.add_argument('--gradient-clip', type=float, default=0.1, metavar='GC',
help='gradient clip threshold (default: 0.1)')
parser.add_argument('--nesterov', action='store_true', default=True,
help='use nesterov')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=5e-4, metavar='D',
help='Weight decay (default: 5e-4)')
parser.add_argument('--upper-body-weight', type=float, default=1., metavar='UBW',
help='loss weight on the upper body joint motions (default: 2.05)')
parser.add_argument('--affs-reg', type=float, default=0.8, metavar='AR',
help='regularization for affective features loss (default: 0.01)')
parser.add_argument('--quat-norm-reg', type=float, default=0.1, metavar='QNR',
help='regularization for unit norm constraint (default: 0.01)')
parser.add_argument('--quat-reg', type=float, default=1.2, metavar='QR',
help='regularization for quaternion loss (default: 0.01)')
parser.add_argument('--recons-reg', type=float, default=1.2, metavar='RCR',
help='regularization for reconstruction loss (default: 1.2)')
parser.add_argument('--val-interval', type=int, default=1, metavar='EI',
help='interval after which model is validated (default: 1)')
parser.add_argument('--log-interval', type=int, default=200, metavar='LI',
help='interval after which log is printed (default: 100)')
parser.add_argument('--save-interval', type=int, default=10, metavar='SI',
help='interval after which model is saved (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--pavi-log', action='store_true', default=False,
help='pavi log')
parser.add_argument('--print-log', action='store_true', default=True,
help='print log')
parser.add_argument('--save-log', action='store_true', default=True,
help='save log')
# TO ADD: save_result
args = parser.parse_args()
data_path = j(args.base_path, '..', 'data')
models_s2ag_path = j(args.base_path, 'models', 's2ag_v2_abl_audio')
args.data_path = data_path
randomized = False
s2ag_config_args = parse_args(args.config)
args.work_dir_s2ag = j(models_s2ag_path, args.dataset_s2ag)
os.makedirs(args.work_dir_s2ag, exist_ok=True)
args.video_save_path = j(args.base_path, 'outputs', 'videos_trimodal_style')
os.makedirs(args.video_save_path, exist_ok=True)
args.quantitative_save_path = j(args.base_path, 'outputs', 'quantitative')
os.makedirs(args.quantitative_save_path, exist_ok=True)
train_data_ted, val_data_ted, test_data_ted = loader.load_ted_db_data(data_path, s2ag_config_args)
data_loader = dict(train_data_s2ag=train_data_ted, val_data_s2ag=val_data_ted, test_data_s2ag=test_data_ted)
pose_dim = 27
coords = 3
audio_sr = 16000
pr = processor.Processor(args.base_path, args, s2ag_config_args, data_loader, pose_dim, coords, audio_sr)
if args.train_s2ag:
pr.train()
pr.generate_gestures(samples_to_generate=data_loader['test_data_s2ag'].n_samples,
randomized=randomized, ser_epoch='best', s2ag_epoch=227)
# pr.generate_gestures_by_env_file(j(data_path, 'ted_db/lmdb_test'), [5, 12],
# randomized=randomized, ser_epoch='best', s2ag_epoch=142)