-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataCompareMain.py
79 lines (70 loc) · 4.63 KB
/
DataCompareMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""
File: DataCompareMain.py
Authors: Ryan J. Urbanowicz, Robert Zhang
Institution: University of Pensylvania, Philadelphia PA
Creation Date: 6/1/2021
License: GPL 3.0
Description: Phase 7 of AutoMLPipe-BC (Optional)- This 'Main' script manages Phase 7 run parameters, and submits job to run locally (to run serially) or on a linux
computing cluster (parallelized). This script runs DataCompareJob.py which runs non-parametric statistical analysis
comparing ML algorithm performance between all target datasets included in the original Phase 1 data folder, for each evaluation metric. Also compares the best
overall model for each target dataset, for each evaluation metric. All 'Main' scripts in this pipeline have the potential to be extended by users to submit jobs
to other parallel computing frameworks (e.g. cloud computing).
Warnings: Designed to be run following the completion of AutoMLPipe-BC Phase 6 (StatsMain.py). Only applied if there are multiple dataset in original target dataset folder (phase 1)
and similarly there are multiple dataset anlaysis folders within the experiment folder output by the pipeline. Works under the assumption that the output file structure generated by
phases 1 to 6 have not changed.
Sample Run Command (Linux cluster parallelized with all default run parameters):
python DataCompareMain.py --out-path /Users/robert/Desktop/outputs --exp-name myexperiment1
Sample Run Command (Local/serial with with all default run parameters):
python DataCompareMain.py --out-path /Users/robert/Desktop/outputs --exp-name myexperiment1 --run-parallel False
"""
#Import required packages ---------------------------------------------------------------------------------------------------------------------------
import argparse
import os
import sys
import time
import DataCompareJob
import pandas as pd
def main(argv):
# Parse arguments
parser = argparse.ArgumentParser(description='')
parser.add_argument('--out-path', dest='output_path', type=str, help='path to output directory')
parser.add_argument('--exp-name', dest='experiment_name', type=str, help='name of experiment (no spaces)')
#Lostistical arguments
parser.add_argument('--run-parallel',dest='run_parallel',type=str,help='if run parallel',default="True")
parser.add_argument('--queue',dest='queue',type=str,help='specify name of parallel computing queue (uses our research groups queue by default)',default="i2c2_normal")
parser.add_argument('--res-mem', dest='reserved_memory', type=int, help='reserved memory for the job (in Gigabytes)',default=4)
parser.add_argument('--max-mem', dest='maximum_memory', type=int, help='maximum memory before the job is automatically terminated',default=15)
options = parser.parse_args(argv[1:])
jupyterRun = 'False'
job_counter = 0
#Load variables specified earlier in the pipeline from metadata file
metadata = pd.read_csv(options.output_path + '/' + options.experiment_name + '/' + 'metadata.csv').values
sig_cutoff = metadata[5,1]
if eval(options.run_parallel):
job_counter += 1
submitClusterJob(options.output_path+'/'+options.experiment_name,options.reserved_memory,options.maximum_memory,options.queue,sig_cutoff,jupyterRun)
else:
submitLocalJob(options.output_path+'/'+options.experiment_name,sig_cutoff,jupyterRun)
print(str(job_counter)+ " job submitted in Phase 7")
def submitLocalJob(experiment_path,sig_cutoff,jupyterRun):
""" Runs DataCompareJob.py locally, once. """
WrapperComparisonJob.job(experiment_path,jupyterRun)
def submitClusterJob(experiment_path,reserved_memory,maximum_memory,queue,sig_cutoff,jupyterRun):
""" Runs DataCompareJob.py once. Runs on a linux-based computing cluster that uses an IBM Spectrum LSF for job scheduling."""
job_ref = str(time.time())
job_name = experiment_path + '/jobs/P7_' + job_ref + '_run.sh'
sh_file = open(job_name,'w')
sh_file.write('#!/bin/bash\n')
sh_file.write('#BSUB -q '+queue+'\n')
sh_file.write('#BSUB -J '+job_ref+'\n')
sh_file.write('#BSUB -R "rusage[mem='+str(reserved_memory)+'G]"'+'\n')
sh_file.write('#BSUB -M '+str(maximum_memory)+'GB'+'\n')
sh_file.write('#BSUB -o ' + experiment_path+'/logs/P7_'+job_ref+'.o\n')
sh_file.write('#BSUB -e ' + experiment_path+'/logs/P7_'+job_ref+'.e\n')
this_file_path = os.path.dirname(os.path.realpath(__file__))
sh_file.write('python ' + this_file_path + '/DataCompareJob.py ' + experiment_path +" "+ str(sig_cutoff)+" "+ str(jupyterRun)+ '\n')
sh_file.close()
os.system('bsub < ' + job_name)
pass
if __name__ == '__main__':
sys.exit(main(sys.argv))