-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
192 lines (149 loc) · 6.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""Training script for the WaveNet network on the VCTK corpus.
This script trains a network with the WaveNet using data from the VCTK corpus,
which can be freely downloaded at the following site (~10 GB):
http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
"""
from __future__ import print_function
from utils import get_arguments, save, load
from utils import validate_directories, create_inputdict
from model import SpeechSeparation
from audio import AudioReader, mk_audio
import time
import logging
import numpy as np
import tensorflow as tf
def train(directories,args):
logdir = directories['logdir']
print ("logdir",logdir)
restore_from = directories['restore_from']
# Even if we restored the model, we will treat it as new training
# if the trained model is written into a location that's different from
# logdir.
is_overwritten_training = logdir != restore_from
coord = tf.train.Coordinator()
# create inputs
gc_enabled = args.gc_channels is not None
reader = AudioReader( \
args.data_dir, \
args.test_dir, \
coord, \
sample_rate=args.sample_rate, \
gc_enabled=gc_enabled)
audio_batch = reader.dequeue(args.batch_size)
# initialize model
net = SpeechSeparation( \
batch_size=args.batch_size, \
rnn_type=args.rnn_type, \
dim=args.dim, \
n_rnn=args.n_rnn, \
seq_len=args.seq_len, \
num_of_frequency_points=args.num_of_frequency_points)
# need to modify net to include these
out = net.initializer(net,args)
summary, output1, output2, losses,apply_gradient_op = out
speech_inputs_1 = net.speech_inputs_1
speech_inputs_2 = net.speech_inputs_2
speech_inputs_mix = net.speech_inputs_mix
# Set up session
tf_config = tf.ConfigProto(\
# allow_soft_placement is set to True to build towers on GPU
allow_soft_placement=True,\
log_device_placement=False,\
inter_op_parallelism_threads = 1)
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
sess.run(tf.global_variables_initializer())
# Create coordinator.
# Set up logging for TensorBoard.
writer = tf.summary.FileWriter(logdir)
writer.add_graph(tf.get_default_graph())
run_metadata = tf.RunMetadata()
# Saver for storing checkpoints of the model.
saver = tf.train.Saver(var_list=tf.trainable_variables(), \
max_to_keep=args.max_checkpoints)
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
reader.start_threads(sess)
try:
saved_global_step = load(saver, sess, restore_from)
if is_overwritten_training or saved_global_step is None:
# The first training step will be saved_global_step + 1,
# therefore we put -1 here for new or overwritten trainings.
saved_global_step = -1
except:
print("Something went wrong while restoring checkpoint. "
"We will terminate training to avoid accidentally overwriting "
"the previous model.")
raise
############################Start Training############################
last_saved_step = saved_global_step
try:
for step in range(saved_global_step + 1, args.num_steps):
loss_sum = 0
start_time = time.time()
inputslist = [sess.run(audio_batch) for i in xrange(args.num_gpus)]
inp_dict = create_inputdict(inputslist,args,speech_inputs_1,
speech_inputs_2,speech_inputs_mix)
summ, loss_value,_= sess.run([summary,losses, apply_gradient_op],
feed_dict=inp_dict)
for g in xrange(args.num_gpus):
loss_sum += loss_value[g]/args.num_gpus
writer.add_summary(summ, step)
duration = time.time() - start_time
if (step < 100):
log_str = ('step {%d} - loss = {%0.3f}, ({%0.3f} sec/step') \
%(step, loss_sum, duration)
logging.warning(log_str)
elif (0==step % 100):
log_str = ('step {%d} - loss = {%0.3f}, ({%0.3f} sec/step') \
%(step, loss_sum/100, duration)
logging.warning(log_str)
if (0==step % 2000):
angle_test, inp_dict = create_inputdict(inputslist, args,
speech_inputs_1, speech_inputs_2, speech_inputs_mix,
test=True)
outp1, outp2 = sess.run([output1,output2], feed_dict=inp_dict)
x_r = mk_audio(outp1,angle_test,args.sample_rate, \
"spk1_test_"+str(step)+".wav")
y_r = mk_audio(outp2,angle_test,args.sample_rate, \
"spk2_test_"+str(step)+".wav")
amplitude_test = inputslist[0][2]
angle_test = inputslist[0][3]
mk_audio(amplitude_test, angle_test, args.sample_rate, \
"raw_test_"+str(step)+".wav")
# audio summary on tensorboard
merged = sess.run(tf.summary.merge(
[tf.summary.audio('speaker1_' + str(step), x_r[None, :],
args.sample_rate, max_outputs=1),
tf.summary.audio('speaker2_' + str(step), y_r[None, :],
args.sample_rate, max_outputs=1)]
))
writer.add_summary(merged, step)
if step % args.checkpoint_every == 0:
save(saver, sess, logdir, step)
last_saved_step = step
except KeyboardInterrupt:
# Introduce a line break after ^C is displayed so save message
# is on its own line.
print()
finally:
#'''
if step > last_saved_step:
save(saver, sess, logdir, step)
#'''
coord.request_stop()
coord.join(threads)
def main():
args = get_arguments()
try:
directories = validate_directories(args)
except ValueError as e:
print("Some arguments are wrong:")
print(str(e))
return
if args.l2_regularization_strength == 0:
args.l2_regularization_strength = None
train(directories,args)
return
##############################################################
if __name__ == '__main__':
main()